Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài của hình chữ nhật là x \(\left(m;x>0\right)\)
chiều rộng của hình chữ nhật là y \(\left(m;y>0\right)\)
Diện tích của hình chữ nhật là: \(x.y=1200\left(m^2\right)\left(1\right)\)
Nếu tăng chiều dài 5m, giảm chiều rộng 10m thì diện tích giảm 300m2.
\(\left(x+5\right).\left(y-10\right)=xy-300\)
\(\Leftrightarrow xy-10x+5y-50=xy-300\)
\(\Leftrightarrow10x-5y=250\)
\(\Leftrightarrow2x-y=50\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}xy=1200\\2x-y=50\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{1200}{x}\\2x-\frac{1200}{x}=50\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1200}{x}\\2x^2-1200=50x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1200}{x}\\2x^2-50x-1200=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1200}{x}\\\left(x-40\right).\left(2x+30\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{1200}{x}\\x=40\left(TM\right),x=-15\left(L\right)\end{cases}\Leftrightarrow\hept{\begin{cases}y=30\left(TM\right)\\x=40\end{cases}}}\)
Vậy chiều dài của hình chữ nhật là 40m
chiều rộng của hình chữ nhật là 30m
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)
Diện tích ban đầu của hình chữ nhật là:
\(ab\left(m^2\right)\)
Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:
\(\left(a-2\right)\cdot2b=ab+240\)
\(\Leftrightarrow2ab-4b=ab+240\)
\(\Leftrightarrow ab-4b=240\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m
- Gọi chiều dài hình chữ nhật ban đầu là a (m) (a>8)
=> chiều rộng hình chữ nhật ban đầu là: a-8 (m)
- Chiều dài mới của hình chữ nhật là: a-5 (m)
- Chiều rộng mới của hình chữ nhật là: a-8+2=a-6 (m)
=> diện tích mới hình chữ nhật là: (a-6)(a-5) (m\(^2\))
=> pt: (a-6)(a-5)=210
<=> (bạn tự giải nhé) a=20 (tmđk) hoặc a=-9 (ktmđk)
=> chiều dài ban đầu là: 20 (m) ; chiều rộng ban đầu là: 20-8=12 (m)
Chiều dài | Chiều rộng | Diện tích | |
Ban đầu | x | y | 1200 |
Sau đó | x + 5 | y - 10 | 900 |
\(\Rightarrow\)\(\hept{\begin{cases}x.y=1200\\\left(x+5\right)\left(y-10\right)=900\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{y}\\\left(\frac{1200}{y}+5\right)\left(y-10\right)-900=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{y}\\1200-\frac{1200}{y}+5y-50-900=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{y}\\1200y-12000+5y^2-50y-900y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{y}\\5y^2+250y-12000=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{1200}{y}\\TH1:y=30\left(tm\right),TH2:y=-80\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1200}{30}\\y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=40\\y=30\end{cases}}\)
Vậy chiều dài hcn là 40m
chiều rộng hcn là 30m
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có: (a+4)(b+1)=ab và (a+5)(b-1)=ab+19
=>a+4b=-4 và -a+5b=24
=>9b=20 và a+4b=-4
=>b=20/9; a=-4-4b=-4-80/9=-116/9(loại)
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có: ab=280 và (a+10)(b-3)=ab+220
=>-3a+10b=250 và ab=280
=>-3a=250-10b và ab=280
=>a=10/3b-250/3 và b(10/3b-250/3)=280
=>b=28
=>a=10
Gọi chiều dài là a, chiều rộng là b. Ta có :
a + 5 = 4(b - 3)
=> a + 5 = 4b - 12
=> 4b - a = 12 + 5 = 17
Mà 2a + 2b = 46 => a + b = 23
Cộng hai pt trên => 4b - a + a + b = 17 + 23
=> 5b = 40
=> b = 8 (m)
=> a = 23 - 8 = 15 (m)
Vậy kích thước của khu vườn là 15m x 8m.
Gọi chiều rộng là x
Chiều dài là x+5
Theo đề, ta có phương trình:
\(\left(x+9\right)\left(x-3\right)=x\left(x+5\right)-20\)
\(\Leftrightarrow x^2+6x-27-x^2-5x+20=0\)
=>x-7=0
hay x=7
Vậy: Chiều rộng là 7m
Chiều dài là 12m