Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x
Chiều dài là x+20
Theo đề, ta có: 2(2x+40+3x)=480
=>5x+40=240
=>x=40
Vậy: Chiều rộng là 40m
Chiều dài là 60m
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)
Diện tích ban đầu của hình chữ nhật là:
\(ab\left(m^2\right)\)
Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:
\(\left(a-2\right)\cdot2b=ab+240\)
\(\Leftrightarrow2ab-4b=ab+240\)
\(\Leftrightarrow ab-4b=240\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m
Gọi chiều dài là a, chiều rộng là b. Ta có :
a + 5 = 4(b - 3)
=> a + 5 = 4b - 12
=> 4b - a = 12 + 5 = 17
Mà 2a + 2b = 46 => a + b = 23
Cộng hai pt trên => 4b - a + a + b = 17 + 23
=> 5b = 40
=> b = 8 (m)
=> a = 23 - 8 = 15 (m)
Vậy kích thước của khu vườn là 15m x 8m.
Gọi \(x,y\left(m\right)\) lần lượt là chiều dài và rộng \(\left(x,y>0\right)\)
Theo đề, ta có :
\(\left\{{}\begin{matrix}x-20=y\\2\left(2x+3y\right)=480\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=20\\2x+3y=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=60\left(n\right)\\y=40\left(n\right)\end{matrix}\right.\)
Vậy chiều dài là \(60m\), chiều rộng là \(40m\)