Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng lần lượt là x và y(x>17; x>y)
VÌ chiều dài hơn chiều rộng 17m nên ta có PT: x-y=17 (1)
Nếu tăng chiều dài thêm 6m, giảm chiều rộng đi 5m thì diện tích mới kém diện tích cũ 100m2 nên ta có PT:
xy-(x+6)(y-5)=100
⇔xy-xy+5x-6y+30=100
⇔5x-6y=70 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x-y=17\\5x-6y=70\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=32\\y=15\end{matrix}\right.\) (TM)
Vậy chiều dài và chiều rộng lần lượt là 32m và 15m
Gọi chiều dài hình chữ nhật là x (m)
(ĐK: x ∈ N*)
Chiều rộng hình chữ nhật là x-17 (m)
Nếu tăng chiều dài 6m và giảm chiều rộng 5m thì diện tích mới kém diện tích cũ 100m2 nên ta có pt:
\(x\left(x-17\right)-\left(x+6\right)\left(x-22\right)=100\\ \Leftrightarrow x^2-17x-x^2+16x+132=100\\ \Leftrightarrow-x=-32\\ \Leftrightarrow x=32\left(tmđk\right)\)
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 32m và 15m
Gọi chiều dài và chiều rộng của hình chữ nhật là x(m) và y(m)
(ĐK: x > 15; x > y)
Chiều dài hơn chiều rộng 15m nên x - y = 15 (1)
Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới kém diện tích cũ 42m2 nên ta có pt:
xy - (x+4)(y-3) = 42
⇔ xy - xy + 3x - 4y + 12 = 42
⇔ 3x - 4y = 30 (2)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}x-y=15\\3x-4y=30\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-4y=60\\3x-4y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=30\\3\cdot30-4y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=30\left(tmđk\right)\\y=15\left(tmđk\right)\end{matrix}\right.\)
Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 30m và 15m
Gọi x là chiều rộng của HCN (x>0) (m)
=> Chiều dài: 15+x (m)
Diện tích thực tế: x.(15+x) (m2)
Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới sẽ là: (x-3).(15+x+4)= (x-3).(19+x)
Vì diện tích giả sử kém diện tích cũ 42m2 nên ta có pt:
x.(15+x)= [(x-3).(19+x)]+42
<=>x2 +15x -x2 -16x= 42-57
<=> -x =-15
<=>x=15(TM)
Vậy chiều rộng HCN có độ dài 15m, chiều dài HCN có độ dài 30m.
gọi chiều rộng hcn là x
thì chiều dài hcn là x +10
diện tích ban đầu là x(x+10)
chiều rộng sau khi giảm là x - 3
chiều dài sau khi tăng là x + 10 +6
ta có:
( x - 3 ) ( x+10+6) = x(x+10) +12
=> x2 + 10x + 6x -3x - 30 - 18 = x2 + 10x +12
=> x2 - x2 + 10x +6x - 3x -10x = 12 +30 +18
=> 3x = 60
=> x = 20
vậy chiều rộng là 20m
=> chiều dài là : 20 +10 = 30m
đề hình như sai bạn à, tại sao lại là kích thước của 1 km?? @@
Gọi chiều dài HCN là x (x>0,m)
Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)
Theo bài ra ta có phương trình sau
\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)
\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)
Tự thực hiện tiếp ....
Gọi chiều dài, chiều rộng mảnh vườn là x và y ( m ; x > y ; x > 3 ; y > 2 )
Diện tích ban đầu = xy ( m2 )
Tăng chiều dài 1m và giảm chiều rộng 2m thì diện tích giảm 20m2 so với quy định
=> ( x + 1 )( y - 2 ) = xy - 20
<=> xy - 2x + y - 2 - xy + 20 = 0
<=> -2x + y = -18 (1)
Giảm chiều dài 3m và tăng chiều rộng 4m thì diện tích tăng 12m2 so với dự định
=> ( x - 3 )( y + 4 ) = xy + 12
<=> xy + 4x - 3y - 12 - xy - 12 = 0
<=> 4x - 3y = 24 (2)
Từ (1) và (2) ta có hệ phương trình : \(\hept{\begin{cases}-2x+y=-18\\4x-3y=24\end{cases}}\)
Giải hệ ta thu được x = 15 và y = 12
Hai nghiệm trên thỏa mãn ĐKXĐ
Vậy diện tích mảnh vườn ban đầu = xy = 15.12 = 180m2
Gọi x(m) là chiều rộng của mảnh vườn ban đầu
y(m) là chiều dài của mảnh vườn ban đầu
=> Diện tích ban đầu của mảnh vườn là x.y (m)
Ta có: Nếu tăng chiều dài thêm 1m và giảm chiều rộng 2m thì mảnh vườn giảm 20m ² so với dự định
=> (y+1).(x-2)=xy-20
<=> xy -2y+x -2= xy-20
<=> x-2y=-18 (1)
Nếu giảm chiều dài 3m và tăng chiều rộng thêm 4m thì diện tích mảnh vườn tăng 12m ² so với dự định .=> (y-3).(x+4)=xy+12
<=> xy +4y-3x-12=xy+12
<=> -3x+4y=24 (2)
Từ (1);(2) ta giải hệ pt được x=12; y=15
Diện tích mảnh vườn bác An dự định ban đầu là x.y=12.15=180 m²
Gọi chiều dài và chiều rộng lần lượt là $a,b(m)(a,b>0)$
$\to a-b=20(1)$
Diện tích hình chữ nhật là $ab$
Nếu tăng chiều dài thêm 6m, giảm chiều rộng đi 4m thì diện tích mới kém diện tích cũ `84m^2` nên ta có pt
$(a+6)(b-4)=ab-84$
$\to ab-4a+6b-64=ab-84$
$\to 4a-6b=20$
$\to 2a-3b=10(2)$
Từ (1),(2) ta có HPT:
$\begin{cases}a-b=10\\2a-3b=10\\\end{cases}$
$\to \begin{cases}2a-2b=20\\2a-3b=10\\\end{cases}$
$\to \begin{cases}b=10\\a=20\\\end{cases}$
Vậy chiều dài và chiều rộng lần lượt là 20 và 10m.