Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Trọng lượng của cục nước đá: \(P=dV=9200.360.10^{-6}=3,312\left(N\right)\)
Thể tích phần nước đá nổi trên mặt nước là:
\(V_n=V-V_c=V-\dfrac{F_a}{d_n}=V-\dfrac{P}{d_n}=360.10^{-6}-\dfrac{3,312}{10000}=28,8.10^{-6}\left(m^3\right)=28,8\left(cm^3\right)\)
Thể tích phần nước mà cục đá tan ra hoàn toàn là:
\(V'=\dfrac{P}{d_n}=\dfrac{3,312}{10000}=3,312.10^{-4}\left(m^3\right)=331,2\left(cm^3\right)\)
b. Thể tích của cục nước đá chiếm chỗ trong chất lỏng ban đầu là:
\(V_c=V-V_n=331,2\left(cm^3\right)\)
Vì \(V_c=V'\) nên thể tích của cục nước đá chiếm chỗ trong chất lỏng ban đầu bằng với thể tích nước do cục đá tan ra hoàn toàn.
\(P=F_A\Leftrightarrow d_{da}.V=d_{nuoc}.V_{chim}\Leftrightarrow D_{da}.V=d_{nuoc}.\left(V-V_{noi}\right)\)
\(\Rightarrow V_{noi}=...\left(m^3\right)\)
\(540cm^3=5,4\cdot10^{-4}m^3\)
\(0,92\left(\dfrac{g}{cm^3}\right)=920\left(\dfrac{kg}{m^3}\right)\)
Ta có: \(\left\{{}\begin{matrix}d_{da}=10D_{da}=10\cdot920=9200\left(\dfrac{N}{m^3}\right)\\P=d_{da}\cdot V=9200\cdot5,4\cdot10^{-4}=4,968\left(N\right)\end{matrix}\right.\)
\(\rightarrow F_A=dV_{chim}=10000V_{chim}\)
Khi vật cân bằng trong nước: \(P=F_A\Leftrightarrow4,968=10000V_{chim}\)
\(\rightarrow V_{chim}=4,968\cdot10^{-4}m^3\)
\(\Rightarrow V_{noi}=V-V_{chim}=5,4\cdot10^{-4}-4,968\cdot10^{-4}=4,32\cdot10^{-5}m^3=43,2cm^3\)
Đổi 360 cm3= 0,00036 m3
Trọng lượng của cục đá là
0,0036.920=3,312 (N)
Thể tích của cục đá là:
\(V=\dfrac{P}{d}=\dfrac{3,312}{1000}=0,000312\left(m^3\right)=331,2\left(cm^3\right)\)
Thể tích của phần cục đá ló khỏi mặt nước là
\(360-331,2=28,8\left(m^3\right)\)
Bài 2:
Ta có: FA=P-P'=3,4-2,5=0,9(N)
Mà \(F_A=d.V=10000.V=0,9\)
\(\Rightarrow V=9.10^{-5}\left(m^3\right)\)
Gọi thể tích của cả cục đá là V
Thể tích phần cục đá nổi khỏi mặt nước là V1
D1 là khối lượng riêng của nước
D2 là khối lượng riêng của đá
V = 360 cm3 = 3,6.10-4 (m3)
D2 = 0,92g/cm3 = 920kg/m3
D1 = 1000 kg/m3
Trọng lượng của cục đá là:
P = V.d2 = V.10D2 = 3,6.10-4.10.920= 3,312(N)
Lực đẩy Asimec tác dụng lên phần đá chìm là:
FA = Vch.d1 = (V-V1).10D1 = (3,6.10-4 - V1) .10000
Khi cục nước đá đã cân bằng nổi trên mặt nước thì
P = FA
3,312 = (3,6.10-4 - V1) .10000
=> 3,6.10-4 - V1 =3,312.10-4
=> V1 =2,88.10-5(m3) = 28,8 cm3
Vậy thể tích phần đá nổi lên khỏi mặt nước là 28,8 cm3
a) Do đá nổi trên mặt nước nên P=FA
\(\Leftrightarrow d_{đá}V=d_{nước}V_{chìm}\)\(\Leftrightarrow9200.0,00036=10000V_{chìm}\)
\(\Leftrightarrow3,312=10000V_{chìm}\Rightarrow V_{chìm}=3,312.10^{-4}\left(m^3\right)=331,2\left(cm^3\right)\)
b) Khối lượng của cục đá là: \(m=DV=360.0,92=331,2\left(g\right)\)
Thể tích của cục đá sau khi tan: \(V_1=\frac{m}{D}=\frac{331,2}{1}=331,2\left(cm^3\right)\)
Do \(360cm^3>331,2cm^3\) nên \(V>V_1\)