K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Rõ ràng \(\Omega=\left\{\left(i;j\right):1\le i,j\le6\right\}\)

Kí hiệu :

\(A_1:\) "Lần đầu xuất hiện mặt 1 chấm"

\(B_1:\) "Lần thứ hai xuất hiện mặt 1 chấm"

\(C:\) " Tổng số chấm là 6"

\(D:\) "Mặt 1 chấm xuất hiện ít nhất một lần"

a) Ta có \(C=\left\{\left(1,5\right),\left(5,1\right),\left(2,4\right),\left(4,2\right)\left(3,3\right)\right\},P\left(C\right)=\dfrac{5}{36}\)

b) Ta có \(A_1,B_1\) độc lập và \(D=A_1\cup B_1\) nên

\(P\left(D\right)=P\left(A_1\right)+P\left(B_1\right)-P\left(A_1B_1\right)\)

\(=\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{6}.\dfrac{1}{6}=\dfrac{11}{36}\)

NV
12 tháng 12 2021

Xác suất:

a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)

b. \(\dfrac{6}{36}=\dfrac{1}{6}\)

c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)

Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)

d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng

\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10

Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)

6 tháng 1 2019

a. Không gian mẫu gồm 36 kết quả đồng khả năng xuất hiện, được mô tả như sau:

Ta có: Ω = {(i, j) | 1 ≤ i , j ≤ 6}, trong đó i, j lần lượt là số chấm xuất hiện trong lần gieo thứ nhất và thứ hai, n(Ω) = 36.

b. A = {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)} ⇒ n(A) = 6

Giải bài 1 trang 74 sgk Đại số 11 | Để học tốt Toán 11

B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 5)}

Giải bài 1 trang 74 sgk Đại số 11 | Để học tốt Toán 11

NV
20 tháng 12 2020

a. Có 3 mặt nguyên tố: 2,3,5 nên xác suất xuất hiện số nguyên tố ở mỗi lần gieo là \(\dfrac{3}{6}=\dfrac{1}{2}\)

Xác suất 2 lần đều xuất hiện số nguyên tố: \(\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{4}\)

b. Xác suất để lần 1 xuất hiện mặt 6 chấm: \(\dfrac{1}{6}\)

c. Xác suất ít nhất 1 lần xuất hiện mặt 6 chấm: \(\dfrac{2.6-1}{36}=\dfrac{11}{36}\)

d. Xác suất ko lần nào xuất hiện 6 chấm: \(1-\dfrac{11}{36}=\dfrac{25}{36}\)

9 tháng 4 2017

Phép thử T được xét là "Gieo một con súc sắc cân đối và đồng chất hai lần".

a) Ω = {(i, j) i, j = 1, 2, 3, 4, 5, 6}.

Số phần tử của không gian mẫu là n(Ω) = 36.

Do tính đối xứng của con súc sắc và tính độc lập của mỗi lần gieo suy ra các kết quả có thể có của phép thử T là đồng khả năng.

b) A = {(6, 4), (4, 6), (5, 5), (6, 5), (5, 6), (6, 6)},

B = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6)}.

c) P(A) = = ; P(B) = .


4 tháng 4 2017

undefined

11 tháng 7 2018

Đáp án A

Phương trình 2lVg5A7NwTYz.png có nghiệm

1ewi1mZmsNk0.png.

Do m là tổng số chấm sau 2 lần gieo súc sắc nên l4Tkoy5lmczS.png.

Do đó yGcNdyifSFhY.png

Các trường hợp có tổng số chấm thỏa mãn yêu cầu bài toán là 

OqGSU6JrC6ry.png.

Số trường hợp của không gian mẫu là  tJpbzT6tBbkh.png.

Vậy xác suất cần tính là d3HOx8zC98S3.png

13 tháng 10 2017

Chọn B

Gọi Ai : “lần gieo thứ i xuất hiện mặt 6 chấm.”, với pMwBaCtITtzK.png

q5dWjS3XrHTO.png

Z4cIjmEA55Qf.png
A : “mặt có 6 chấm chỉ xuất hiện trong lần gieo thứ 3” 

 

20 tháng 2 2017

Đáp án là A.

• Số phần tử của không gian mẫu là n ( Ω )   = 36 .

Gọi A là biến cố thỏa yêu cầu bài toán.

Phương trình x2 + bx + c = 0 có nghiệm khi và chỉ khi ∆   =   b 2   -   4 a c   ≥ 0 ⇔ b 2   ≥   4 a c .

Xét bảng kết quả (L – loại, không thỏa ; N – nhận, thỏa yêu cầu đề bài)

29 tháng 8 2018

Đáp án B

Phương pháp: Xác suất của biến cố A là n A n Ω trong đó nA là số khả năng mà biến cố A có thể xảy ra, n Ω  là tất cả các khả năng có thể xảy ra.

Cách giải:  x 2 + b x + c x   +   1   =   0 (*)

Để phương trình (*) vô nghiệm thì phương trình x2 + bx + c = 0 (**) có 2 trường hợp xảy ra:

TH1: PT (**) có 1 nghiệm x = -1 

TH2: PT (**) vô nghiệm 

Vì c là số chấm xuất hiện ở lần gieo thứ 2 nên c ≤ 6   ⇒ b ≤ 2 6   ≈ 4 , 9 .

Mà b là số chấm xuất hiện ở lần giao đầu nên  b   ∈ 1 ; 2 ; 3 ; 4

Với b = 1  ta có: c > 1 4   ⇒ c ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6  có 6 cách chọn c.

Với b = 2 ta có: c   >   1 ⇒ c ∈ 2 ; 3 ; 4 ; 5 ; 6 có 5 cách chọn c.

Với b = 3 ta có: c   >   9 4   ⇒ c ∈ 3 ; 4 ; 5 ; 6  có 4 cách chọn c.

Với b = 4 ta có: c > 4 => c ∈   5 ; 6 có 2 cách chọn c.

Do đó có 6+5+4+2 = 17 cách chọn (b;c) để phương trình (**) vô nghiệm.

Gieo con súc sắc 2 lần nên số phần tử của không gian mẫu  n Ω   =   6 . 6   =   36

Vậy xác suất đề phương trình (*) vô nghiệm là  1 + 17 36   =   1 2