K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2023

Áp dụng đ/l Pytago vào tam giác vuông ABC, có :

\(BC^2=AB^2+AC^2\\ \Rightarrow AC^2=BC^2-AB^2\\ \Rightarrow AC=\sqrt{4^2-3^2}\\ =\sqrt{7}\left(m\right)\)

Chiều cao của cây lúc chưa gãy là :

\(4+\sqrt{7}\approx6,6\left(m\right)\)

15 tháng 10 2023

 

A B C 4 3

Áp dụng định lý Pytago cho tam giác ABC ta có:

\(AB^2+AC^2=BC^2\)

Thay số: \(3^2+4^2=BC^2\)

\(BC^2=25 \)

\(BC=5\)

Vậy chiều cao của cái cây lúc chưa bị gãy là: 

\(5 +4 = 9m\)

15 tháng 10 2023

Sửa đề: Chiều dài từ gốc cây đến chỗ cây bị gãy là 3m

loading...

Gọi A là gốc của cái cây

Gọi Clà ngọn của cái cây

Gọi B là chỗ cây bị gãy

Do đó, ta có: \(AB\perp AC\)

Theo đề, ta có: BC=7m; AB=3m

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC=\sqrt{7^2-3^2}=2\sqrt{10}\left(m\right)\simeq6,3\left(m\right)\)

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

26 tháng 4 2018

Cây dương cao 7m

12 tháng 3 2019

3m 4m ?m

Ngọn cây gãy (theo quy ước) sẽ tạo thành hình tam giác vuông.

Gọi độ dài từ chỗ gãy cây đến ngọn cây là a (a thuộc N*)

Áp dụng định lý Py - ta - go, ta có:

32+42=a2

9+16=a2

=>a2=25

    a=5

Vậy cây dương cao số mét là:

5+3=8(m)

P/s: Xin lỗi vì hình vẽ có hơi xấu 

10 tháng 12 2021

Phần gãy dài \(\sqrt{6^2+8^2}=10(m)\)

Vậy cây cao \(10+6=16(m)\)

9 tháng 6 2021

Gọi chiều cao của cây là h = A'C' và cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Ta có: A’C’ ⊥ A’B, AC ⊥ A’B, DE ⊥ A’B

⇒ A’C’ // AC // DE.

Ta có: ΔDEB 

9 tháng 6 2021

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi chiều cao của cây là h = A'C' và cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Ta có: A’C’ ⊥ A’B, AC ⊥ A’B, DE ⊥ A’B

⇒ A’C’ // AC // DE.

Ta có: ΔDEB 

22 tháng 4 2017

Lời giải

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Gọi chiều cao của cây là h = A'C' và chọn một cọc tiêu AC = 2m.

Khoảng cách từ chân đến mắt người đo là DE = 1,6m.

Cọc xa cây một khoảng A'A = 15m, và người cách cọc một khoảng AD = 0,8m và gọi B là giao điểm của C'E và A'A.

Giải bài 53 trang 87 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải:

Giả sử AB là cây cần do, CD là cọc EF là khoảng cách từ mắt tới chân.

∆KDF ∽ ∆HBF

=> HBKD=HFKFHBKD=HFKF

=> HB = HF.KDKFHF.KDKF

mà HF = HK + KF =AC + CE = 15 + 0,8 = 15.8m

KD = CD - CK = CD - EF = 2 - 1,6 = 0,4 m

Do đó: HB = 7,9 m

Vậy chiều cao của cây là 7,9 m.