Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = C_7^2.C_7^2 = 441\)
a) Biến cố “Bốn viên bi lấy ra có cùng màu” xảy ra khi mỗi lần lấy từ 2 hộp đều là hai viên bi xạnh hoặc hai viên bi đỏ. Số kết quả thuận lợi cho biến cố là \(C_4^2.C_5^2 + C_3^2.C_2^2 = 63\)
Vậy xác suất của biến cố “Bốn viên bi lấy ra có cùng màu” là \(P = \frac{{63}}{{441}} = \frac{1}{7}\)
b) Số kết quả thuận lợi cho biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là \(C_4^1.C_3^1.C_2^2 + C_3^2.C_5^1.C_2^1 = 42\)
Vậy xác suất của biến cố “Trong 4 viên bi lấy ra có đúng 1 viên bi xanh” là: \(P = \frac{{42}}{{441}} = \frac{2}{{21}}\)
c) Gọi A là biến cố “Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ”, ta có biến cố đối là \(\overline A \): “4 viên bi lấy ra chỉ có một màu”
\(\overline A \) xảy ra khi 2 lần lấy ra đều được các viên bi cùng màu xanh hoặc cùng màu đỏ
Từ câu a) ta có xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{1}{7}\)
Suy ra, xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{7} = \frac{6}{7}\)
`\Omega_1=C_9 ^1=9`
`\Omega_2=C_13 ^2=78`
`@TH1:`
Gọi `A:`"Lấy từ hộp thứ nhất viên bi trắng."
`=>A=C_5 ^1=5`
`=>P(A)=5/9`
Gọi `B:`" Lấy từ hộp thứ hai `2` viên bi trắng."
`=>B=C_8 ^2=28`
`=>P(B)=5/9 . 28/78=70/351`
`@TH2:`
Gọi `C:`"Lấy từ hộp thứ nhất viên bi xanh."
`=>C=C_4 ^1=4`
`=>P(C)=4/9`
Gọi `D:`" Lấy từ hộp thứ hai `2` viên bi trắng."
`=>D=C_7 ^2=21`
`=>P(D)=4/9 . 21/78=14/117`
Ta có \(n\left( \Omega \right) = C_{12}^6 = 924\). Gọi E là biến cố: “Trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen”. Có \(C_6^3 = 20\) cách chọn 3 viên bi trắng, có \(C_4^2 = 6\) cách chọn 2 viên bi đỏ, có \(2\) cách chọn 1 viên bi đen.
Theo quy tắc nhân, ta có: \(n\left( E \right) = 20.6.2 = 240\). Vậy \(P\left( E \right) = \frac{{240}}{{924}} = \frac{{20}}{{77}}\).
Tổng số kết quả của phép thử có thể xảy ra là \(n(\Omega ) = C_{12}^4 = 495\)
a) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 1 bi xanh”, suy ra biến cố đối của biến cố A là \(\overline A \): “Trong 4 viên bi lấy ra không có viên bi xanh nào”
\(\overline A \) xảy ra khi 4 viên bi lấy ra chỉ có màu đỏ hoặc vàng. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_9^4 = 126\)
Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{126}}{{495}} = \frac{{14}}{{55}}\)
Vậy xác suất của biến cố A là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{{14}}{{55}} = \frac{{41}}{{55}}\)
b) Gọi biến cố A: “Trong 4 viên bi lấy ra có ít nhất 2 bi đỏ ”, suy ra biến cố đối của biến cố A là \(\overline A \): “Trong 4 viên bi lấy ra có nhiều hơn 2 bi đỏ”
\(\overline A \) xảy ra khi 4 viên bi lấy ra có 3 hoặc 4 bi đỏ. Số kết quả thuận lợi cho \(\overline A \)là: \(n(A) = C_4^3.8 + C_4^4 = 33\)
Xác suất của biến cố \(\overline A \) là: \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{{33}}{{495}} = \frac{1}{{15}}\)
Vậy xác suất của biến cố A là \(P(A) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{15}} = \frac{{14}}{{15}}\)
Giả sử trong 4 viên đó có 4 viên đỏ
=>Có \(C^4_6=15\)
=>\(n\left(\overline{A}\right)=15\)
\(n\left(\Omega\right)=C^4_{15}=1365\)
=>\(P_A=1-\dfrac{15}{1365}=\dfrac{90}{91}\)
\(n\left(C\right)=C^2_6\cdot8\cdot10+C^2_8\cdot6\cdot10+C^2_{10}\cdot6\cdot8=5040\)
a, Lấy ngẫu nhiên 3 viên bi có \(C_{16}^3\)
\(\Rightarrow n\left(\Omega\right)=C^3_{16}\)
\(A"\) lấy ba bi có màu trắng "
\(\Rightarrow n\left(A\right)=C_7^3\)
\(\Rightarrow P\left(A\right)=\dfrac{C_7^3}{C_{16}^3}=\dfrac{1}{16}\)
b, B " Lấy 3 bi không có màu đỏ
TH1 : 3 viên màu trắng \(C_7^3\)
TH2 : 3 viên màu đen \(C_7^3\)
TH3 : 3 viên đủ 2 màu đen trắng : \(C_{13}^3-C_7^3-C_6^3\)
\(\Rightarrow n\left(B\right)=C_7^3+C_6^3+\left(C_{13}^3-C_7^3-C_6^3\right)=286\)
\(\Rightarrow P\left(B\right)=\dfrac{286}{C_{16}^3}=\dfrac{143}{280}\)