K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

a, (x-1)3=8

(x-1)3=23    hoac      (x-1)=(-2)3

x-1=2                        x-1= -2

x=3                           x= -1

Vay x=3 hoac x= -1

13 tháng 10 2016

a ) \(\left(x-1\right)^3=8\)

\(\Leftrightarrow\left(x-1\right)=\sqrt[3]{8}\)

\(\Leftrightarrow\left(x-1\right)=2\)

\(\Leftrightarrow x=3\)

Vậy \(x=3\) .

c

 

Bài 1:

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=\left(x-2\right)^2\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3-x+2\right)\left(2x-3+x-2\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(3x-5\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow x=1\)

b: \(\left|x\right|< 3\)

nên -3<x<3

c: \(\left|x\right|\ge5\)

nên \(\left[{}\begin{matrix}x\ge5\\x\le-5\end{matrix}\right.\)

Bài 2: 

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=7\end{matrix}\right.\)

9 tháng 4 2017

a, \(x-3\sqrt{x}=0\). Đk: x\(\ge\)0

--> x2 = 9x

-->x(x-9)=0

-->\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)(tmđk)

b,\(\left|9-7x\right|=5x-3\)

* 9-7x=5x-3

-->12x=12 --> x=1

* 9-7x=-5x+3

--> 2x=6 -->x=3

20 tháng 10 2015

à, phần a ra x = 400. Nhầm

24 tháng 7 2019

a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)

b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)

c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)

\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)

d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)

\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)

24 tháng 7 2019

a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)

<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)

<=> \(\sqrt{x}+8=28\)

<=> \(\sqrt{x}=28-8\)

<=> \(\sqrt{x}=20\)

<=> \(\left(\sqrt{x}\right)^2=20^2\)

<=> x = 400

=> x = 400

b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)

<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)

<=> \(3\sqrt{x}+5=\sqrt{x}+12\)

<=> \(3\sqrt{x}=\sqrt{x}+12-5\)

<=> \(3\sqrt{x}=\sqrt{x}+7\)

<=> \(3\sqrt{x}-\sqrt{x}=7\)

<=> \(2\sqrt{x}=7\)

<=> \(\sqrt{x}=\frac{7}{2}\)

<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)

<=> \(x=\frac{49}{4}\)

=> \(x=\frac{49}{4}\)

c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)

<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)

<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)

<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)

<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)

<=> \(8\sqrt{x}=6\sqrt{x}+4\)

<=> \(8\sqrt{x}-6\sqrt{x}=4\)

<=> \(2\sqrt{x}=4\)

<=> \(\sqrt{x}=2\)

<=> \(\left(\sqrt{x}\right)^2=2^2\)

<=> x = 4

=> x = 4

d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)

<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)

<=>\(2\sqrt{3x}=6\sqrt{3x}\)

<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)

<=>\(-4\sqrt{3x}=0\)

<=> \(\sqrt{3x}=0\)

<=> \(\left(\sqrt{3x}\right)^2=0^2\)

<=> 3x = 0

<=> x = 0

=> x = 0

5 tháng 4 2020

1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)

Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)

Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)

\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)

1. \(A=x^{15}+3x^{14}+5\)

\(A=x^{14}\left(x+3\right)+5\)

\(A=x^{14}+5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=1^{2007}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15\)

\(C=3x\left(7x^2+4x^2-x+8+5\right)\)

\(C=3x\left(0+5\right)\)

\(C=15x\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)

\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

\(D=4x.0+2007\)

\(D=2007\)

22 tháng 1 2020

a) \(5x-7=3x+9\)

\(\Rightarrow5x-3x=9+7\)

\(\Rightarrow2x=16\)

\(\Rightarrow x=16:2\)

\(\Rightarrow x=8\)

Vậy \(x=8.\)

b) \(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{2}{5}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=\pm\frac{2}{5}.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{2}{5}-\frac{1}{2}\\x=\left(-\frac{2}{5}\right)-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{matrix}\right.\)

Vậy \(x\in\left\{-\frac{1}{10};-\frac{9}{10}\right\}.\)

c) \(5x-\left|9-7x\right|=3\)

\(\Rightarrow\left|9-7x\right|=5x-3\)

\(\Rightarrow\left[{}\begin{matrix}9-7x=5x-3\\9-7x=3-5x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}9+3=5x+7x\\9-3=-5x+7x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}12=12x\\6=2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=12:12\\x=6:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{1;3\right\}.\)

d) \(-5+\left|3x-1\right|+6=\left|-4\right|\)

\(\Rightarrow-5+\left|3x-1\right|+6=4\)

\(\Rightarrow-5+\left|3x-1\right|=4-6\)

\(\Rightarrow-5+\left|3x-1\right|=-2\)

\(\Rightarrow\left|3x-1\right|=\left(-2\right)+5\)

\(\Rightarrow\left|3x-1\right|=3.\)

\(\Rightarrow\left[{}\begin{matrix}3x-1=3\\3x-1=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=4\\3x=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4:3\\x=\left(-2\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{4}{3};-\frac{2}{3}\right\}.\)

Chúc bạn học tốt!

20 tháng 9 2020

ngu thế à bạn