K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

10 tháng 7 2018

\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)

=> Biểu thức A phụ thuộc vào giá trị của y

10 tháng 7 2018

\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)

\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)

5 tháng 7 2019

a) \(x^3-16x=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

Vậy tập nghiệm \(S=\left\{-4;0;4\right\}\)

5 tháng 7 2019

b) \(x^4-2x^3+10x^2-20x=0\)

\(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x^2+10\right)\left(x-2\right)=0\)

Mà \(x^2+10>0\)nên \(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy tập nghiệm S = { 0;2}

12 tháng 7 2017

       x2-4x+4=4x2-12x+9

\(\Leftrightarrow\)3x2-8x+5=0

\(\Leftrightarrow\)3x2-3x-5x+5=0

\(\Leftrightarrow\)3x(x-1)-5(x-1)=0

\(\Leftrightarrow\)(x-1)(3x-5)=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)

b,x2-2x-25=0

\(\Leftrightarrow\)(x-1)2-26=0

\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)

2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4

b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017

mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory

12 tháng 7 2017

Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3 

13 tháng 7 2017

Bài 1: 

a)  \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)

\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)

VẬy tập nghiệm của phương trình là : S={11/3 ; 7}

b)   Nếu x^2 -2x  =25 thì lẻ lắm . Tớ nghĩ phải là :  x^2 -2x  = 24 

Bài 2 : 

a)  \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)  hay \(A\ge4\)

Vậy GTNN của A là 4  khi x = 1        ( hay x-1 =0 )

b)  \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)

Vì \(\left(2x-1\right)^2\ge0\)     và \(\left(y+1\right)^2\ge0\)   nên   \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)

HAy \(B\ge-2017\)    Vậy GTNN của B là -2017  khi x=1/2   và y =  -1

15 tháng 7 2016

Bài 1:

A=x2 +y2 -2x-2y+2xy+5

=x2 +y2 -2x-2y+2xy+1+4

=xy+x2-x+xy+y2-y-y-x+1+4

=x(x+y-1)+y(x+y-1)-1(x+y-1)

=(x+y-1)(x+y-1)

=(x+y-1)2+4.Với x+y=3

=>A=(3-1)2+4=22+4=8

Bài 2:

B=x^2 +4y^2-2x-4y-4xy+10

=-2xy+x2-x-2xy+4y2+2y-x+2y+1-8y+9

=x(x-2y-1)-2y(x-2y-1)-1(x-2y-1)-8y+9

=(x-2y-1)(x-2y-1)-8y+9

=(x-2y-1)2-8y+9

Với x-2y=5.Ta có:... tự thay

Bài 3: chịu

Chủ nhật tuần này mình tổ chức mini game Các bạn giúp mình giải 3 bài toán nhé 4 bạn nhanh nhất sẽ đc quà nhaChủ nhật nình sẽ xem bạn nào nhanh tay nhất để nhận quà nhaLàm hết nha làm từng vức một mới đc nhận quà Mình hứa Bài 1 tìm x...
Đọc tiếp

Chủ nhật tuần này mình tổ chức mini game 

Các bạn giúp mình giải 3 bài toán nhé 

4 bạn nhanh nhất sẽ đc quà nha

Chủ nhật nình sẽ xem bạn nào nhanh tay nhất để nhận quà nha

Làm hết nha làm từng vức một mới đc nhận quà 

Mình hứa 

Bài 1 tìm x biết

1/2.(2/5x-4x)+(2x+5).x=-13/2

2x^2+3(x-1).(x+1)=5x(x-1)

(5x-1).(2x-7)-(2x-3).(5x+9)

(3x+4).(5x-1)+(5x+2).(1-3x)+2=0

(5x-1).(2x+3)-3.(3x-1)=0

X^3(2x-3)-x^2(4x^2-6x+2)=0

2x(x-5)-x(3+2x)=0

X(x-1)-x^2+2x=5

8(x-2)-2(3x-4)=2

Bài 2 tính giá trị các biểu thức sau

A=2x(x-3y)-3y(x+2)-2(x^2-4xy-3y) vs x=2/3 ,y=3/4

B=3x(x-4y)-12/5y(y-5x) vs x=4,y=-5

C=(x-4).(x-2)-(x-1).(x-3) vs x=7/4

D=xy(x+y)-x^2(x+y)-y^2(x-y) vs x=3,y=2

E=(3x-1)^2+3(3x-1).(2x+1)+(2x+1)^2  x=5

F=(2x+3)^2-2(2x+3).(2x+5)+(2x+5)^2 vs x=2010

G=4x^2(5x-3y)-5x^2(4x+y) vs x=-2, y=-3

Bài 3 chứng minh các biểu thức sau ko thuộc biến

A=3x(x-5y)+(y-5x)(-3y)-3(x^2-y^2)-1

B=(3x-5).(2x+11)-(2x+3).(3x+7)

C=x(2x+1)-x^2(x+2)+(x^3-x+3)

D=z(y-x)+y(z-x)+x(y+z)

E=x(x^2+x+1)-x^2(x+1)-x+5

Thank các bạn 

nhớ chủ nhật nha 

Mình sẽ xem ai nhanh nhất 

Sau đó gửi mail cho mình để nhận quà nha

0
19 tháng 5 2016

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2