Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|\sqrt{2}-x\right|=\sqrt{2}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{2}-x=\sqrt{2}\\\sqrt{2}-x=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\sqrt{2}\end{cases}}}\)
b) \(\left|x+1\right|=\sqrt{3}+2\)
\(\Rightarrow\orbr{\begin{cases}x+1=\sqrt{3}+2\\x+1=-\sqrt{3}-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+1\\x=-\sqrt{3}-3\end{cases}}\)
\(-\frac{5}{9}\left(\frac{3}{10}-\frac{2}{5}\right)=-\frac{5}{9}\left(\frac{3}{10}-\frac{4}{10}\right)=-\frac{5}{9}.\frac{-1}{10}=\frac{1}{18}\)
\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{9}{25}}+1^{2016}=\frac{1}{2}.8-\frac{3}{5}+1=4+\frac{2}{5}=\frac{22}{5}\)
\(2^8:2^5+3^2.2-12=2^3+9.2-12=8+18-12=8+6=14\)
\(3^x+\sqrt{\frac{16}{81}}-\sqrt{9}+\frac{\sqrt{81}}{3}=9\frac{4}{9}\)
\(3^x+\frac{4}{9}-3+\frac{9}{3}=9\frac{4}{9}\)
\(3^x+\frac{4}{9}-3+3=9\frac{4}{9}\)
\(3^x+\frac{4}{9}=9+\frac{4}{9}\)
\(\Rightarrow3^x=9+\frac{4}{9}-\frac{4}{9}\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
Giả theo cách lớp 7 nha:
Đặt \(\hept{\begin{cases}\sqrt{6-x}=a\\\sqrt{x+2}=b\end{cases}}\)
\(\Rightarrow a^2+b^2=8\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow2ab\le a^2+b^2\)
\(\Leftrightarrow a^2+b^2+2ab\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\cdot8=16\)
\(\Leftrightarrow a+b\le4\)
Dấu = xảy ra khi \(a=b=2\)
\(\Leftrightarrow x=2\)
\(ĐKXĐ:-2\le x\le6\)
Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\le\sqrt{2.\left(a+b\right)}\) với \(a,b\ge0\) ta có :
\(y=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2.\left(6-x+x+2\right)}=\sqrt{2.8}=4\)
Dấu "=" xảy ra \(\Leftrightarrow6-x=x+2\Leftrightarrow x=2\)
Vậy \(y_{min}=4\) khi \(x=2\)
ra hình trái tym :)