K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

Làm trc cho 2 câu cuối

c) \(a^2-b^2-4a+4b\)

\(=\left(a+b\right)\left(a-b\right)-4\left(a-b\right)\)

\(=\left(a-b\right)\left[\left(a+b\right)-4\right]\)

d) \(a^2+2ab+b^2-2a-2b+1\)

\(=\left(a+b\right)^2-2\left(a+b\right)+1\)

\(=\left(a+b\right)\left[\left(a+b\right)-2\right]+1\)

15 tháng 7 2016

1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)

2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)

3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3

Bài 1: Tính nhanh

a) Ta có: \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+97+...+2+1\)

\(=\left(100+1\right)+\left(99+2\right)+\left(98+3\right)+\left(97+4\right)+...+\left(50+51\right)\)

\(=101\cdot50=5050\)

b) Ta có: \(B=\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=24\cdot\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(\Leftrightarrow4\cdot B=5^{32}-1\)

hay \(B=\frac{5^{32}-1}{4}\)

\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\) =\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\) =\(a^2\) b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\) =\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\) =25 c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\) =\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\) =\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\) =... =\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\) \)

d)Tương tự

\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)

=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\)

=\(a^2\)

b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

=\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\)

=\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\)

=\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\)

=25

c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\)

=\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\)

=\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)

=...

=\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)

d)Tương tự

5 tháng 9 2017

cảm ơn

a: \(=\left[a-\left(b-c\right)\right]^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2-2a\left(b-c\right)+\left(b-c\right)^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2-2ab+2ac+2ab-2ac=a^2\)

b: \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2\)

\(=\left(-4\right)^2=16\)

c: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\cdot\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=2^{128}-1\)

d: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{3^{64}-1}{2}\)

22 tháng 6 2016

Phiển bạn bổ sung đề ! Ko phải chép lại đề đâu, bạn chỉ cần sửa nội dung thôi , hoặc nếu ko bt cách sửa nội dung thì bạn có thể trả lời xuống dưới này. 

đề là cái j ko thấy mặt mũi cái đề sao bít mà làm!! ~_~ @@

576586787697890780899635654767546

27 tháng 11 2018

\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)

\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)

\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)

\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)

\(=\frac{3a^2-b^2}{b^2}\)

\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)