Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - 2x - 15
= x^2 + 3x - 5x - 15
= x(x + 3) - 5(x + 3)
= (x - 5)(x + 3)
\(x^2-2x-15\)\(=\left(x^2-5x\right)+\left(3x-15\right)\)
\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)
chu vi hcn là 4/5 chiều rong bang 4/5 chieu dai . tinh dien tích hcn
giúp mình nha
a, 15x - 6 = 12x + 3
\(\Leftrightarrow\) 15x - 12x = 3 + 6
\(\Leftrightarrow\) 3x = 9
\(\Leftrightarrow\) x = 3
Vậy S = {3}
b, \(\frac{x+2}{2}-\frac{2x-3}{5}=10x+\frac{13}{10}\)
\(\Leftrightarrow\) \(\frac{5\left(x+2\right)}{10}-\frac{2\left(2x-3\right)}{10}=\frac{100x}{10}+\frac{13}{10}\)
\(\Leftrightarrow\) 5(x + 2) - 2(2x - 3) - 100x - 13 = 0
\(\Leftrightarrow\) 5x + 10 - 4x + 6 - 100x - 13 = 0
\(\Leftrightarrow\) -99x + 3 = 0
\(\Leftrightarrow\) x = \(\frac{1}{33}\)
Vậy S = {\(\frac{1}{33}\)}
d, (3x + 2)(4x - 5) = 0
\(\Leftrightarrow\) 3x + 2 = 0 hoặc 4x - 5 = 0
\(\Leftrightarrow\) x = \(\frac{-2}{3}\) và x = \(\frac{5}{4}\)
Vậy S = {\(\frac{-2}{3}\); \(\frac{5}{4}\)}
Phần c với phần e bạn viết vậy mình ko hiểu, bn viết lại đi!
Chúc bn học tốt!!
Sử dụng phương pháp phân tích thành nhân tử
( có thể nhẩm nghiệm =casio rồi tách)
mk làm VD 1 cái
mấy cái còn lại tương tự
\(x^2-3x+2=x^2-x-2x+2=0\)
\(x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)=0\)
=> x=1 hoặc x=2
- Kudo -
a) x2 - 3x + 2 = 0
<=> (x - 2)(x - 1) = 0
<=> x - 2 = 0 hoặc x - 1 = 0
<=> x = 2 hoặc x = 1
b) x2 + 5x + 6 =0
<=> (x + 2)(x + 3) = 0
<=> x + 2 = 0 hoặc x + 3 = 0
<=> x = -2 hoặc x = -3
c) x2 - 4x + 3 = 0
<=> (x - 1)(x - 3) = 0
<=> x - 1 = 0 hoặc x - 3 = 0
<=> x = 1 hoặc x = 3
d) x2 + 2x - 3 = 0
<=> (x - 1)(x + 3) = 0
<=> x - 1 = 0 hoặc x + 3 = 0
<=> x = 1 hoặc x = -3
e) x2 - 2x = 0
<=> x(x - 2) = 0
<=> x = 0 hoặc x - 2 = 0
<=> x = 0 hoặc x = 2
\(Đk:\) \(x\ne1,x\ne2,x\ne3\)
\(\Rightarrow\dfrac{x+4}{\left(x-2\right)\left(x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(x-1\right)}=\dfrac{2x+5}{\left(x-3\right)\left(x-1\right)}\)
\(\Rightarrow\dfrac{\left(x+4\right)\cdot\left(x-3\right)+\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x-3\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(x-3\right)\left(x-1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)
\(\Rightarrow0x-14=x-10\)
\(\Rightarrow x=-4\left(tmđk\right)\)
a/\(\Leftrightarrow2x^2+3x>3x\Leftrightarrow2x^2>0\Rightarrow\forall x\in R\) sao cho x khác 0 PT luôn đúng
b/\(\Leftrightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+4}{96}+1\right)+\left(\frac{x+6}{95}+1\right)\ge0\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{96}+\frac{x+100}{95}\ge0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{96}+\frac{1}{95}\right)\ge0\)\(\Rightarrow x\ge-100\)
c/\(\Leftrightarrow x^2+4x+4< 2x^2+4x+4\)
\(\Leftrightarrow x^2< 2x^2\)
\(\Leftrightarrow0< x^2\).Với mọi x khác 0 PT luôn đúng
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)