K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a: Ta có: Om là tia phân giác của \(\widehat{xOy}\)

nên \(\widehat{xOm}=\widehat{yOm}=\dfrac{180^0}{2}=90^0\)

Do đó: Om\(\perp\)xy

b: Ta có: \(\widehat{xOa}+\widehat{mOa}=90^0\)

\(\widehat{mOb}+\widehat{yOb}=90^0\)

mà \(\widehat{mOa}=\widehat{yOb}\)

nên \(\widehat{xOa}=\widehat{mOb}\)

24 tháng 7 2021

Ta có \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{5}=\frac{z}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{28}\end{cases}}\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=8\)

=> x = 15 x 8 = 120 

; y = 20 x 8 = 160 ; 

z = 28 x 8 = 224

Vậy x = 120 ; y = 160 ; z = 224

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

13 tháng 10 2021

Bài 1 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{12}=\frac{y}{-8}=\frac{x+y}{12+\left(-8\right)}=\frac{-48}{4}=-12.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=-12\\\frac{y}{-8}=-12\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-144\\y=96\end{cases}}\)

b ) Từ \(x\):\(\left(-7\right)\)\(y\)\(10\)

\(\Rightarrow\)\(\frac{x}{-7}=\frac{y}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-7}=\frac{y}{10}=\frac{y-x}{10-\left(-7\right)}=\frac{-34}{17}=-2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-7}=-2\\\frac{y}{10}=-2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=14\\y=-20\end{cases}}\)

c ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{-12}=\frac{2x}{30}=\frac{y}{-12}=\frac{2x+y}{30+\left(-12\right)}=\frac{-360}{18}=-20\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=-20\\\frac{y}{-12}=-20\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-300\\y=240\end{cases}}\)

d ) Từ \(2x=-3y\)\(\Rightarrow\)\(\frac{x}{-3}=\frac{y}{2}\)

Áp dugj tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{2}=\frac{x}{-3}=\frac{5y}{10}=\frac{x-5y}{-3-10}=\frac{-130}{-13}=10\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-3}=10\\\frac{y}{2}=10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-30\\y=20\end{cases}}\)

13 tháng 10 2021

Bài 2 :

a ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=\frac{x+y-z}{2+\left(-3\right)-5}=\frac{-54}{-6}=9.\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{-3}=9\\\frac{z}{5}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=18\\y=-27\\z=45\end{cases}}\)

b ) Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{-7}=\frac{z}{3}=\frac{x}{4}=\frac{2y}{-14}=\frac{z}{3}=\frac{x+2y-z}{4+\left(-14\right)-3}=\frac{-39}{-13}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=3\\\frac{y}{-7}=3\\\frac{z}{3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=12\\y=-21\\z=9\end{cases}}\)

31 tháng 1 2017

4b)\(x^2-2y^2=1\)

\(\Rightarrow2y^2=x^2-1\) (1)

\(\Rightarrow2y^2=\left(x-1\right)\left(x+1\right)\)

Ta có:\(2y^2⋮2\Rightarrow\left(x-1\right)\left(x+1\right)⋮2\)\(\Rightarrow\)x lẻ\(\Rightarrow\left\{\begin{matrix}x-1⋮2\\x+1⋮2\end{matrix}\right.\Rightarrow\left(x-1\right)\left(x+1\right)⋮4\)

\(\Rightarrow2y^2⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\). Mà y nguyên tố nên y=2

Thay y =2 vào (1) ta được:

\(2.2^2=x^2-1\)

\(\Rightarrow x^2-1=8\)

\(\Rightarrow x^2=9\)

\(\Rightarrow x=3\)

Vậy x=3, y=2

10 tháng 5 2017

Cộng, trừ đa thức

10 tháng 5 2017

Mai được không?

11 tháng 5 2017

ta sẽ làm gì với cái này :D

11 tháng 5 2017

bạn làm hôj mjk