Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có (x-1)(2x-1)=0
<=> x-1=0 <=> x=1
2x-1=0 x=1/2
để mx2-(m+1)x+1=0 tương đương với (x-1)(2x-1)=0
<=> m-m-1+1=0 có cùng tập nghiệm với (x-1)(2x-1)=0
với x=1 thì m-(m+1)+1=0
<=>m-m-1+1=0
<=> 0 m = 0 ( lđ )
Với x=1/2 thì 1/4m - (m+1)1/2+1=0
<=> 1/4m - (m+1)1/2+1=0
<=> 1/4m - 2(m+1)/4 +4/4 =0
<=>m-2m-2+4=0
<=> -m +2=0
<=> -m=-2
<=>m=2
b; Ta có: (x-3)(ax+2)=0 và (2x+b)(x+1)=0.
=> (x-3)(ax+2)=(2x+b)(x+1).
<=> ax2+(2-3a)x-6=2x2+(2+b)x+b.
<=>a=2 và 2-3a=2+b và b=-6 (Hai phương trình bậc 2 bằng nhau thì các hệ số tương ứng sẽ bằng nhau).
Vậy a=2; b=-6 thỏa mãn phương trình trên.
Bài giải :
8.1 x+y=xy
⇒x-xy+y=0
⇒x(1-y)+(y-1)+1=0
⇒(x-1)(1-y)+1=0
⇒(x-1)(y-1)-1=0
⇒(x-1)(y-1)=1
⇒x-1, y-1 là ước của 1
⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1
⇒(x;y)=(2;2),(0;0)
8.3. 5xy-2y²-2x²+2=0
⇔(x-2y)(y-2x)+2=0
⇔(x-2y)(2x-y)=2
⇒x-2y và 2x-y là ước của 2
\(A=16-2x-x^2\)
\(A=-x^2-2.x.1-1+17\)
\(A=-\left(x^2+2.x.1+1\right)+17\)
\(A=-\left(x+1\right)^2+17\le17\)
Dấu = xảy ra khi :
\(x+1=0\Leftrightarrow x=-1\)
Vậy A max = 17 tại x = -1
A B C D E
a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)
\(BD\)chung
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b, Theo câu a, ta có :
\(\Delta ABD=\Delta EBD\left(cmt\right)\)
\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )
\(\Rightarrow\Delta ABE\)là tam giác cân
Lại có : \(\widehat{B}=60^o\)
\(\Rightarrow\Delta ABE\)là tam giác đều
c, Do : \(\Delta ABE\)đều
\(\Rightarrow AB=BE=5\left(cm\right)\)
Do : \(BD\)là phân giác của \(\widehat{B}\)
\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)
Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)
Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)
\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)
Xét : \(\Delta BDE\)và \(\Delta CDE\)có :
\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)
\(DE\)chung
\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)
\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)
\(\Rightarrow BE=CE=5\left(cm\right)\)
\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)
Vậy : \(BC=10\left(cm\right)\)
Câu hỏi của Cr746 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo !
Đang câu hỏi thì bớt make color nha :)))
(x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)
<=> -5x2 + 2x - 1 = -5x2 - x - 22
<=> 2x - 1 = -x - 22
<=> 2x - 1 + x = -22
<=> 3x - 1 = -22
<=> 3x = -22 + 1
<=> 3x = -21
<=> x = -7
\(a,35x^2y-14xy+21xy^2=7xy\left(5x+3y-2\right)\)
\(b,x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)
\(c,x^2-7x+xy-7y=x\left(x-7\right)+y\left(x-7\right)=\left(x-7\right)\left(x+y\right)\)
\(d,x^2-y^2-10x+25=\left(x-5\right)^2-y^2=\left(x-y-5\right)\left(x+y-5\right)\)
\(e,x^3y+2x^2y^2-xyz^2+xy^3=xy\left(x^2+2xy+y^2-z^2\right)\)
\(=xy\left[\left(x+y\right)^2-z^2\right]=xy\left(x+y-z\right)\left(x+y+z\right)\)
tophòng là nhiệt độ phòng nhé
hok tốt