Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔDAK=ΔDEC
b: ΔDAK=ΔDEC
=>AK=EC
ΔBAD=ΔBED
=>BA=BE
BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
d:
Xét ΔBKC có BK=BC
nên ΔBKC cân tại B
ΔBKC cân tại B
mà BH là đường phân giác
nên H là trung điểm của CK
=>HK=HC
Trong toán học, bất đẳng thức AM-GM là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Tên gọi đúng của bất đẳng thức này là bất đẳng thức AM-GM. Bất đẳng thức AM-GM là một bất đẳng thức cơ bản kinh điển quan trọng nhất của toán học sơ cấp, vì nó đã có khá nhiều cách chứng minh được đưa ra, hàng chục mở rộng, hàng chục kết quả chặt hơn đăng trên các diễn đàn toán học. Phần này tôi xin giới thiệu một kết quả chặt hơn bất đẳng thức AM-GM khác được suy ra từ chính cách chứng minh mới bất đẳng thức AM-GM (Cauchy - Cô-si).
# Aeri #
Tham khảo
Số trung bình cộng của một dấu hiệu được tính từ bảng tần số theo cách sau: - Nhân từng giá trị với tần số tương ứng. - Cộng tất cả các tích vừa tìm được. - Chia tổng đó cho các giá trị (tức tổng các tần số).
Theo mik nhớ thì hình như là bn cứ chọn tần số lớn nhất thoi
Cmt (v) comment
Nghĩa là bình luận
@Nghệ Mạt
#cua
comment(viết đầy đủ)
HT