Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)
(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)
b.
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)
c.
\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)
d.
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\) => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)
=\(\frac{105+9}{16}=\frac{57}{8}\)
b)tương tự câu a
a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)
=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)
Lại có 3x - 2y + z = 105
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\)
\(=\frac{105+1}{4}=\frac{106}{4}=26,5\)
=> x = 52 ; y = 77,5 ; z = 104
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)
Lại có x2 - y2 + 2z2 = 108
=> 4k - 9k + 2.16k = 108
=> -5k + 32k = 108
=> 27k = 108
=> k = 4
=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8
Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu
=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)
(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}
Giải thích các bước giải:
2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0
⇒⎧⎪⎨⎪⎩2z−4x=03x−2y=04y−3z=0⇒y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z
mà 200<y2+z2<450200<y2+z2<450
⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288
Vì z là số nguyên dương ⇒√128<z<√288⇒128<z<288
⇒z∈{12;13;14;15;16}⇒z∈{12;13;14;15;16}
mà y là số nguyên dương và y=34zy=34z
⇒z∈{12;16}⇒z∈{12;16}
Thế vào y=34zy=34z và 2z−4x=02z-4x=0
+) Với z=12⇒y=34.12=6z=12⇒y=34.12=6
2.12−4x=0⇒x=62.12-4x=0⇒x=6
Với z=16⇒y=34.16=12z=16⇒y=34.16=12
2.16−4x=0⇒x=82.16-4x=0⇒x=8
Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}
(x;y;z)={(6;9;12);(8;12;16)}(x;y;z)={(6;9;12);(8;12;16)}
Giải thích các bước giải:
2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=02z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0
⇒⎧⎪⎨⎪⎩2z−4x=03x−2y=04y−3z=0⇒y=34z⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z
mà 200<y2+z2<450200<y2+z2<450
⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288
Vì z là số nguyên dương ⇒√128<z<√288⇒128<z<288
⇒z∈{12;13;14;15;16}⇒z∈{12;13;14;15;16}
mà y là số nguyên dương và y=34zy=34z
⇒z∈{12;16}⇒z∈{12;16}
Thế vào y=34zy=34z và 2z−4x=02z-4x=0
+) Với z=12⇒y=34.12=6z=12⇒y=34.12=6
2.12−4x=0⇒x=62.12-4x=0⇒x=6
Với z=16⇒y=34.16=12z=16⇒y=34.16=12
2.16−4x=0⇒x=82.16-4x=0⇒x=8
Vậy ta có các cặp nghiệm là: (x;y;z)={(6;9;12);(8;12;16)}
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
bác tham khảo ở đây nhé: Câu hỏi của Phong Tuấn Đỗ - Toán lớp 7 | Học trực tuyến
a) Ta có 3x = 2y = z
=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)
=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)
b) 6x = 10y = 15z
=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)
=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)
=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)
c) 6x = 4y = 2z
=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)
=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)
d) x = 3y = 2z
=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)
=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)
=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)
a) Áp dụng t/x dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}=\dfrac{3x}{6}=\dfrac{2z}{-10}=\dfrac{3x-2z}{6+10}=\dfrac{48}{16}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.\left(-5\right)=-15\end{matrix}\right.\)
b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y}{-26}=\dfrac{3z}{51}=\dfrac{2y-3z}{-26-51}=\dfrac{77}{-77}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-1\right)=-10\\y=\left(-13\right).\left(-1\right)=13\\z=17.\left(-1\right)=-17\end{matrix}\right.\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\Rightarrow\dfrac{3x}{6}=\dfrac{y}{3}=\dfrac{2z}{-10}\)
Áp dụng t/c của DTSBN, ta có: \(\dfrac{3x-2z}{6-\left(-10\right)}=\dfrac{48}{16}=3\)
\(\dfrac{x}{2}=3\Rightarrow x=6\)
\(\dfrac{y}{3}=3\Rightarrow y=9\)
\(\dfrac{z}{-5}=3\Rightarrow z=-15\)
3.x=2.y , 4.x=2.z và x2 +
Làm giống như bạn Should A Person