K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

mọi người giúp mk vs!!!!!

19 tháng 6 2021

\(111...1222...2=111...1.10^n+2x111...1\) (Mỗi số hạng có n chữ số 1)

Đặt \(111...1=a\)  (n chữ số 1) \(\Rightarrow a=9a+1\)

\(\Rightarrow111...1222...2=111...1\left(10^n+2\right)=a\left(9a+1+2\right)=3a\left(3a+1\right)\)(dpcm)

19 tháng 6 2021

Xin lỗi

Đặt \(111...1=a\Rightarrow10^n=9a+1\)

26 tháng 3 2020

sao lớp 6 mk đã gạp rùi nhỉ

17 tháng 8 2018

\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)

\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)

\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x

17 tháng 8 2018

3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2

Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)

Tương tự ta có b^2-a^2=n

Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn

Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1

Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)

Từ (1) và (2)=> n chia hết cho 40

                 

3 tháng 8 2016

Bài 3:

\(\frac{3n+1}{5n+2}\)

Ta có : (3n +1) * 5 =15n + 5

            (5n+2) *3 = 15n + 6

Mà :  15n + 6 - (15n + 5 ) =1 

       =>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)

13 tháng 6 2017

Với n = 1 thì ta có: 

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)

Giả sử bất đẳng thức trên đúng tới n = k hay

\(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\)

Ta cần chứng minh bất đẳng thức cũng đúng với n = k + 1.

Ta có: \(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{3k+4}\)

\(=\left(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}\right)+\left(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}\right)\)

Ta đã có: \(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\) nên ta cần chứng minh

\(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}>0\)

\(\Leftrightarrow\frac{2}{\left(3k+2\right)\left(3k+3\right)\left(3k+4\right)}>0\) đúng

Vậy theo quy nạp thì \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}>1\) đúng với mọi n nguyên dương.

30 tháng 6 2020

Cho t hỏi sao lại có đoạn \(\frac{1}{k+2}+\frac{1}{k+3}+....+\frac{1}{3k+4}\)tòi ra và phải c/minh nó lớn hơn 0??

22 tháng 11 2016

Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:

       n^3 + 2n chia hết cho d =>  n(n^3 + 2n) chia hết cho d =>   n^4 + 2n^2 chia hết cho d (1)

       n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d  => (n^2 + 1)^2  =  n^4 + 2n^2 + 1 chia hết cho d  (2)

 Từ (1) và (2) suy ra :     

                                               (n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d  =>  1 chia hết cho d => d=+-1

   Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1

22 tháng 11 2016

Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau . 

Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa . 

Vậy không thể rút gọn và phân số này đã tối giản