Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoc24 có bộ gõ công thức toán tích hợp sẵn, bạn lưu ý gõ đề đúng công thức để tránh gây "phản cảm" cho người đọc.
Lời giải:
ĐKXĐ: $x=0$ hoặc $x\geq 1$
Hiển nhiên $x=0$ là 1 nghiệm của PT
Nếu $x\neq 0\Rightarrow x\geq 1$. Khi đó:
PT $\Leftrightarrow 2x^2-2\sqrt{x(x^2-x)}-2\sqrt{x(x-1)}=0$
$\Leftrightarrow x^2-2x+1+[(x^2-x)+x-2\sqrt{x(x^2-x)}]+[x+(x-1)-2\sqrt{x(x-1)}]=0$
$\Leftrightarrow (x-1)^2+(\sqrt{x^2-x}-\sqrt{x})^2+(\sqrt{x}-\sqrt{x-1})^2=0$
$\Rightarrow (x-1)^2=(\sqrt{x^2-x}-\sqrt{x})^2=(\sqrt{x}-\sqrt{x-1})^2=0$ (vô lý- loại)
Vậy $x=0$ là nghiệm duy nhất.
Áp dụng bất đẳng thức bunhiacopxki :
\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2.\)
<=> \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)(đpcm)
Dấu = khi x=y=z
Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
khi đó:
\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy max P = 3 tại a = b = c =1.
Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-
Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra
\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:
\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Đây là bất đẳng thức Schur bậc 3, ta có đpcm.