K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 1 2020

Hoc24 có bộ gõ công thức toán tích hợp sẵn, bạn lưu ý gõ đề đúng công thức để tránh gây "phản cảm" cho người đọc.

Lời giải:

ĐKXĐ: $x=0$ hoặc $x\geq 1$

Hiển nhiên $x=0$ là 1 nghiệm của PT

Nếu $x\neq 0\Rightarrow x\geq 1$. Khi đó:

PT $\Leftrightarrow 2x^2-2\sqrt{x(x^2-x)}-2\sqrt{x(x-1)}=0$

$\Leftrightarrow x^2-2x+1+[(x^2-x)+x-2\sqrt{x(x^2-x)}]+[x+(x-1)-2\sqrt{x(x-1)}]=0$

$\Leftrightarrow (x-1)^2+(\sqrt{x^2-x}-\sqrt{x})^2+(\sqrt{x}-\sqrt{x-1})^2=0$

$\Rightarrow (x-1)^2=(\sqrt{x^2-x}-\sqrt{x})^2=(\sqrt{x}-\sqrt{x-1})^2=0$ (vô lý- loại)

Vậy $x=0$ là nghiệm duy nhất.

4 tháng 12 2015

chtt làm gì có ha Như Ý

6 tháng 7 2016

  Áp dụng bất đẳng thức bunhiacopxki :

\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2.\)

<=> \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)(đpcm)

Dấu = khi x=y=z

1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

10 tháng 1 2016

\(=\frac{1}{2}\)