K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A ta có :

AB2 + AC2 = BC2

\(\Rightarrow\)AC2 = BC2 - AB2 = 102 - 62 = 82 

\(\Rightarrow\)AC = 8 cm

theo định lí quan hệ giữa cạnh và góc trong tam giác ta có : \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)( vì AB < AC < BC )

b) Xét tam giác DAC và tam giác BAC có :

AB = AD ( gt )

\(\widehat{DAC}=\widehat{BAC}=90^o\)

AC ( cạnh chung )

\(\Rightarrow\)tam giác DAC = tam giác BAC ( c.g.c )

\(\Rightarrow\)DC = BC

\(\Rightarrow\)tam giác DCB cân tại C

c) Xét tam giác BDC có CA và DK là trung tuyến và chúng giao nhau tại M nên M là trọng tâm của tam giác BDC

\(\Rightarrow\)MC = \(\frac{2}{3}\)AC = \(\frac{2}{3}.8=\frac{16}{3}\)cm  

d)  Nối A với Q.

Vì Q nằm trên đường trung trực của AC nên QA = QC \(\Rightarrow\)tam giác QAC cân tại Q \(\Rightarrow\)\(\widehat{QAC}=\widehat{QCA}\)

Ta có : \(\widehat{ADC}+\widehat{DCA}=90^o\) ; \(\widehat{DAQ}+\widehat{QAC}=90^o\)

\(\Rightarrow\)\(\widehat{DAQ}=\widehat{ADQ}\)\(\Rightarrow\)tam giác DQA cân tại Q \(\Rightarrow\)DQ = DA

Từ đó suy ra : DQ = QC \(\Rightarrow\)BQ là trung tuyến tam giác DBC mà BQ đi qua trọng tâm M

Suy ra : 3 điểm B,M,Q thẳng hàng

27 tháng 4 2018

áp dụng định lí py-ta-go ta có

AB^2+AC^2=BC

=6^2+AC^2=10^2

12+AC^2=20

SUY RA AC=20-12=8 

CĂN BẬC 2 CỦA 8 LÀ 4

SUY RA AC=4

GÓC B <C<A

20 tháng 3 2018

xem trên mạng

26 tháng 4 2021

Chưa chắc đã có mà xem 

19 tháng 8 2018

a/   áp dụng định lý py - ta - go vào tam giác ABC vuông tại A có :

             AB2  +AC= BC2

         <=> 6+AC2 = 102

         <=> AC2 = 64

         <=> AC=8 (cm )

ta có AB < AC < BC (6 < 8 < 10 )

=> \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\) ( quan hệ giữa góc và cạnh )

b/   xét tam giác CAB và CAD có

         CA chung

         AB = AD ( vì A là trung điểm của BD )

       \(\widehat{CAB}=\widehat{CAD}\)( = 90 độ )

=> tam giác CAB = tam giác CAD ( c - g - c )

=> CB = CD

=> tam giác BCD cân tại C

các câu còn lại mk k biết làm dâu 

học tốt

3 tháng 6 2017

A B C D K Q M 1 2 1

a) Có: Tam giác ABC vuông tại A => AB2+AC2=BC2 (ĐL Pytago) <=> AC2=BC2-AB2 => AC2=102-62

=> AC2=100-36=64 => AC2=82 =>AC=8 (cm)

=> AB<AC<BC => ^BAC>^ABC>^ACB (Quan hệ giữa góc và cạnh đối xứng trong tam giác)

b) ^A=900, A là trung điểm của BD => AC là trung trực của đoạn thẳng BD => CB=CD (Tính chất đường trung trực)

 => Tam giác BCD cân tại C (đpcm) 

c) Xét tam giác BCD: A là trung điểm của BD, K là trung điểm của BC, AC giao DK tại M.

=> M là trọng tâm của tam giác BCD => MC=2/3AC (T/c 3 đường trung tuyến) => MC=2/3.8\(\approx\)5,3 (cm)

d) \(\Delta\)ABC=\(\Delta\)ADC (c.g.c) => ^C1=^C2 (2 góc tương ứng) (1)

Điểm Q thuộc trung trực của AC => QA=QC => Tam giác AQC cân tại Q => ^A1=^C(2)

Từ (1) và (2) => ^C2=^A1. Mà 2 góc đó nằm ở vị trí so le trong => AQ//BC

Lại có: AQ//BC và A là trung điểm của BD => AQ là đường trung bình của tam giác BCD.

=> Q là trung điểm của DC => BQ là trung tuyến của tam giác BCD. Mà M là trọng tâm của tam giác BCD

=> BQ đi qua điểm M hay 3 điểm B,M,Q thẳng hàng (đpcm) .

3 tháng 6 2017

a, AB2 + AC2 = BC2    \(\Rightarrow\) AC= BC - AB2    hay  AC 2 = 10 2 - 62 = 64 \(\Rightarrow\)AC = \(\sqrt{\left(64^{ }\right)^2}\)\(\Rightarrow\) AC = 8

 SO SÁNH : AB < AC < BC ( 6 < 8 < 10 )

b, xét \(\Delta\)ABC ( \(\widehat{BAC}\)= \(90^0_{ }\)) =và \(\Delta\)ADC (\(\widehat{DAC}\)= 90 độ) 

AB = AD ( A là trung điểm BD )

AC : cạnh chung

\(\Rightarrow\)\(\Delta\)ABC =    \(\Delta\)ADC ( 2 cạnh góc vuông )

\(\Rightarrow\)BC = DC ( 2 cạnh tương ứng )

\(\Rightarrow\)\(\Delta\)BCD cân

 ý c với d mình đang nghĩ đới nhá ^_^

22 tháng 5 2021

a,AD ĐL pytago vào \(\Delta ABC\)vuông tại A có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2\)

\(\Rightarrow AC^2=10^2-6^2\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

Xét \(\Delta BCD\)có: A là trung điểm của BD

                              K là trung điểm của BC

                               AC giao DK tại M

=>M là trọng tâm của \(\Delta BCD\)

\(\Rightarrow MC=\frac{2}{3}AC=\frac{2}{3}.8=5,3\left(cm\right)\)

b.Ta có:\(AB< AC< BC\)

\(\Rightarrow\widehat{BAC}>\widehat{ABC}>\widehat{ACB}\)

22 tháng 5 2021

c.Ta có:\(\widehat{A}=90^o\)và A là trung điểm của BD

=>AC là đường trung trưc của BD

=>CB=CD

=>\(\Delta BCD\)cân tại C

d. bạn tự cm \(\Delta ABC=\Delta ADC\left(c.g.c\right)\)

\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)(2 g.t.ư) (1)

Q là ttruc của AC=>QA=QC

=> tg AQC cân tại Q

=>\(\widehat{A_1}=\widehat{C_1}\)(2)

Từ (1) và (2)=>\(\widehat{C_1}=\widehat{A_1}\)

Mà 2 góc này ở VT SLT=>AQ//BC(3)

Lại có:A là trung điểm của BD(4)

Từ (3) và (4) => AQ là đường trb của tg BCD

=>Q là tđ củaDC

=>BQ là đường ttuyen của tgBCD

Mà M là trọng tâm của tg BCD 

=> thẳng hàng 

a: AC=8cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔCBD có

CA là đường cao

CA là đường trung tuyến

Do đó:ΔCBD cân tại C

c: Xét ΔCBD có 

CA là đường trung tuyến

DK là đường trung tuyến

CA cắt DK tại M

Do đó: M là trọng tâm của ΔCBD

=>AM=1/3AC=8/3(cm)