K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2018

sai roi

9 tháng 12 2019

Điểm rơi \(\left(1;0;0\right)\) và các hoán vị.Ta UCT:)

Ta bất đẳng thức phụ:

\(\sqrt{7x+9}\ge x+3\) với \(0\le x\le1\)

\(\Leftrightarrow7x+9\ge x^2+6x+9\)

\(\Leftrightarrow7\ge x+6\)

\(\Leftrightarrow x\le1\left(true!!\right)\)

Khi đó ta có:

\(\sqrt{7a+9}\le a+3;\sqrt{7b+9}\le b+3;\sqrt{7c+9}\le c+3\)

\(\Rightarrow\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\le a+b+c+9=10\)

Dấu "=" xảy ra tại \(a=1;b=c=0\) và các hoán vị.

13 tháng 12 2018

số thực ko âm nhé

\(a+b+c=1\Leftrightarrow a;b;c\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)

\(\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\)

\(=\sqrt{a+6a+9}+\sqrt{b+6b+9}+\sqrt{c+6c+9}\)

\(\ge\sqrt{a^2+6a+9}+\sqrt{b^2+6b+9}+\sqrt{c^2+6c+9}\)

\(=\sqrt{\left(a+3\right)^2}+\sqrt{\left(b+3\right)^2}+\sqrt{\left(c+3\right)^2}\)

\(=a+b+c+9=10\left(a;b;c\ge0\right)\)

\("="\Leftrightarrow\)a;b;c là hoán vị (0;0;1)

NV
13 tháng 6 2020

Đặt \(\left(\sqrt{7a+9};\sqrt{7b+9};\sqrt{7c+9}\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}3\le x;y;z\le4\\x^2+y^2+z^2=34\end{matrix}\right.\)

Ta cần tìm min của \(S=x+y+z\)

Do \(3\le x;y;z\le4\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x-4\right)\le0\\\left(y-3\right)\left(y-4\right)\le0\\\left(z-3\right)\left(z-4\right)\le0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge\frac{x^2+12}{7}\\y\ge\frac{y^2+12}{7}\\z\ge\frac{z^2+12}{7}\end{matrix}\right.\) \(\Rightarrow x+y+z\ge\frac{x^2+y^2+z^2+36}{7}=10\)

\(S_{min}=10\) khi \(\left(x;y;z\right)=\left(3;3;4\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

i don not no

câu này đơn giản quá, ko thích hợp vs người đẳng cấp như anh dây đâu

câu này ai giải đc cho tui 10000

NV
19 tháng 11 2018

Bạn viết đề sai, nếu VT là \(\sum\dfrac{1}{\sqrt{7a^2-12ab+b^2}}\) thì vế phải là \(\dfrac{3}{\sqrt{2}}\)

VT là \(\sum\dfrac{1}{\sqrt{7a^2-13ab+7b^2}}\) thì VP mới là 3 được

Từ \(ab+bc+ac=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (chia 2 vế cho abc)

Ta có \(\dfrac{1}{\sqrt{7\left(a^2+b^2\right)-12ab}}\le\dfrac{1}{\sqrt{14ab-12ab}}=\dfrac{1}{\sqrt{2ab}}\)

Tương tự\(\dfrac{1}{\sqrt{7b^2-12bc+7c^2}}\le\dfrac{1}{\sqrt{2bc}}\) ; \(\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le\dfrac{1}{\sqrt{2ac}}\)

Cộng vế với vế:

\(VT\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{3}{\sqrt{2}}\)

Dấu "=" xảy ra khi a=b=c=1