Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin\left(a+\frac{2019\pi}{2}\right)=sin\left(a-\frac{\pi}{2}+1010\pi\right)=sin\left(a-\frac{\pi}{2}\right)=-cosa\)
\(sin\left(a-\frac{9\pi}{2}\right)=sin\left(a-\frac{\pi}{2}-4\pi\right)=sin\left(a-\frac{\pi}{2}\right)=-cosa\)
\(cos\left(a+999\pi\right)=cos\left(a+\pi+998\pi\right)=cos\left(a+\pi\right)=-cosa\)
\(sin\left(a+999\pi\right)=sin\left(a+\pi+998\pi\right)=sin\left(a+\pi\right)=-sina\)
a: \(AB=\sqrt{\left(1-5\right)^2+\left(1-1\right)^2}=4\)
\(BC=\sqrt{\left(1-1\right)^2+\left(4-1\right)^2}=3\)
b: ABCD là hình bình hành
=>vecto AB=vecto DC
=>1-x=1-5=-4 và 4-y=1-1=0
=>x=5; y=4
Đặt \(m=a^2,n=b^2\)
Ta đưa bài toán về dạng tìm GTLN và GTNN của \(A=m-3mn+2n\)
Khi đó ta suy ra từ giả thiết :
\(\left(m+n+1\right)^2+3mn+1=4m+5n\)
\(\Rightarrow m-3mn+2n=\left(m+n+1\right)^2+1-3m-3n\)
\(=\left(m^2+n^2+2mn+2m+2n+1\right)+1-3n-3m\)
\(=m^2+n^2+2mn-m-n+2\)
\(=m^2+m\left(2n-1\right)+n^2-n+2\)
\(=m^2+m\left(2n-1\right)+\frac{\left(2n-1\right)^2}{4}+\frac{7}{4}\)
\(=\left(m+\frac{2n-1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Hay \(A\ge\frac{7}{4}\) . Đẳng thức xảy ra khi \(m=\frac{1-2n}{2}\)
Tới đây bạn tự suy ra nhé ^^
11 c)
\(a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) (luôn đúng)
12 a) Có a+b+c=1\(\Rightarrow\) (1-a)(1-b)(1-c)= (b+c)(a+c)(a+b) (*)
áp dụng BĐT cô-si: \(\left(b+c\right)\left(a+c\right)\left(a+b\right)\ge2\sqrt{bc}2\sqrt{ac}2\sqrt{ab}=8\sqrt{\left(abc\right)2}=8abc\) ( luôn đúng với mọi a,b,c ko âm )
b) áp dụng BĐT cô-si: \(c\left(a+b\right)\le\dfrac{\left(a+b+c\right)^2}{4}=\dfrac{1}{4}\)
Tương tự: \(a\left(b+c\right)\le\dfrac{1}{4};b\left(c+a\right)\le\dfrac{1}{4}\)
\(\Rightarrow abc\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{4}\dfrac{1}{4}\dfrac{1}{4}=\dfrac{1}{64}\)