K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

1/

\(Sm=\frac{m}{2}\left(2U_1+\left(m-1\right)d\right)\)

\(Sn=\frac{n}{2}\left(2U_1+\left(n-1\right)d\right)\)

\(\Rightarrow\frac{Sm}{Sn}=\frac{m\left[2U+_1\left(m-1\right)d\right]}{n\left[2U_1+\left(n-1\right)\right]}=\frac{m^2}{n^2}\)

\(\Rightarrow\frac{m}{n}=\frac{2U_1\left(m-1\right)d}{2U_1+\left(n-1\right)d}\)

\(\frac{Um}{Un}=\frac{U_1+\left(m-1\right)d}{U_1\left(n-1\right)d}\)

2/

a,\(3\tan\left(2x+40^o\right)\sqrt{3}=0\)

\(\Leftrightarrow tan\left(2x+40^o\right)=\frac{1}{\sqrt{3}}-tan30^o\)

\(\Rightarrow2x+40^o=30^o+k.180^o\)         \(\left(k\in Z\right)\)

\(\Leftrightarrow x=-5^o+k.90^o\)

b,\(\cos4x-2\cos^23x+\cos2x=0\)

\(\Leftrightarrow\left(\cos4x+\cos2x\right)-2cos^23x=0\)

\(\Leftrightarrow2cos\)\(3x\)\(cos\)\(x-2cos^23x=0\)

\(\Leftrightarrow\cos3x\left(\cos x-\cos3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\cos3x=0\\\cos x=\cos3x\end{cases}}\)

+\(\cos3x=0\Rightarrow3x=\frac{\pi}{2}+k\pi\left(k\inℤ\right)\)

\(\Leftrightarrow x=\frac{\pi}{6}+k\frac{\pi}{3}\)

+\(\cos x=\cos3x\Leftrightarrow\orbr{\begin{cases}3x=x+t2\pi\\3x=-3+t2\pi\end{cases}}\left(t\inℤ\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=t\pi\\x=\frac{t\pi}{2}\end{cases}}\Leftrightarrow x=\frac{t\pi}{2}\)

Vậy có No là \(x=\frac{\pi}{6}+k\frac{\pi}{3},x=\frac{t\pi}{2}\)

NV
25 tháng 9 2019

ĐKXĐ: \(cosx\ne\frac{1}{2}\Rightarrow x\ne\pm\frac{\pi}{3}+k2\pi\)

\(cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+4sinx.cosx-2sinx}{2cosx-1}\)

\(\Leftrightarrow cos2x+\sqrt{3}\left(1+sinx\right)=\frac{2cosx-1+2sinx\left(2cosx-1\right)}{2cosx-1}\)

\(\Leftrightarrow cos2x+\sqrt{3}+\sqrt{3}sinx=2sinx+1\)

\(\Leftrightarrow1-2sin^2x+\sqrt{3}\left(1+sinx\right)=2sinx+1\)

\(\Leftrightarrow2sin^2x+2sinx-\sqrt{3}\left(1+sinx\right)=0\)

\(\Leftrightarrow\left(2sinx-\sqrt{3}\right)\left(1+sinx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{3}+k2\pi\left(ktm\right)\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

20 tháng 11 2016

12545789

a) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)

\(2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2\alpha-1\)

b) \(\frac{\cos\alpha}{1-\sin\alpha}=\frac{1+\sin\alpha}{\cos\alpha}\)\(\Leftrightarrow\)\(\left(1-\sin\alpha\right)\left(1+\sin\alpha\right)=\cos^2\alpha\)

\(\Leftrightarrow\)\(1-\left(\sin^2\alpha+\cos^2\alpha\right)=0\)\(\Leftrightarrow\)\(1-1=0\) ( luôn đúng ) 

c) \(\frac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=\frac{2\cos\alpha.2\sin\alpha}{\sin\alpha.\cos\alpha}=4\)

um, hình như câu b) chỗ 1-.... đó hơi sai nếu viết từ bước trên xuống á bạn!

mình nghĩ là: sau dấu bằng đầu tiên, sau đó là:

\(=cos^2\alpha=1-sin^2\alpha\)(luôn đúng)

CẢM ƠN bạn nhiều lắm luôn nha!!!!!

26 tháng 7 2017

Kết quả:

A=1    B=2   C=-4

3 tháng 10 2018

\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)

\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)