K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

P la trung điểm của BA

N là trung điểm của AC

DO đó: PN là dường trung bình

=>PN//BC và PN=BC/2(1)

=>ΔAPN đồng dạng với ΔABC

b: Xét ΔGBC có

E là trung điểm của GB

F là trung điểm của GC

Do đó: EF là đường trung bình

=>EF//BC và EF=BC/2(2)

Từ(1) và(2) suy ra PN//EF và PN=FE

=>NPEF là hình bình hành

27 tháng 10 2018

B A C M N E F Q

MK K QUEN VẼ TRÊN MÁY TÍNH LÊN HÌNH NÓ K ĐƯỢC CHUẨN , BẠN VẼ VOAFP VỞ THÌ CÂN CHÍNH XÁC HÔ NHÉ 

                                                               bài làm

xét tám giác ABC          có M là trung điểm của AB ; N là trung điểm của AC  

áp dụng tc đường trung bình trong 1 tam giác ta có : MN // BC ; MN = \(\frac{1}{2}\) BC

Xét tứ giác BMNC ; có MN//BC ( cmt )

                   => BMNC là thang( dn ............)

mà góc B = góc C ( tam giác ABC cân ) => BMNC là hình thang cân

có MN=\(\frac{1}{2}\) BC mà MN=6cm => BC=12

b)

có NM//BC => MN//BE   (1)

có MN=\(\frac{1}{2}\)BC  mà BE=\(\frac{1}{2}\) BC ( vì AE là đường trung tuyến => BE=EC=\(\frac{1}{2}\) BC  ) 

=> MN=BE         (2)

 từ (1) và (2)

=> BMNE là hình bình hành ( 2 cạnh song song và = nhau)

c)

có tam giác ABC  cân tại A => AB = AC  

có AN=\(\frac{1}{2}AC\) ;\(AM=\frac{1}{2}AB\)  mà AB=AC(cmt)

=> AN=AM

xét tứ giác AMEN có AM và AN là 2 cạnh kề mà AM=An => AMEN là hình thoi (dn............)

d)

có tam giác ABC cân tại A mà AE là đường trung tuyến => AE là đường cao => AE \(\perp BC\)

hay \(AF\perp BC\)

xét tứ giác ABFC có AF và BC là 2 đường chéo

mà \(AF\perp BC\)

=> ABFC là hình thoi (định nghĩa ......................)

e)

xét tứ giác AQCE 

có AC và EQ là 2 đường chéo cắt tại N

mà N là trung điểm của AC ( đề bài )

N là trung điểm của EQ( tia đối )

=> AQCE là hình bình hành 

mà AEC=900 ( vì \(AE\perp BC\left(cmt\right)\) )

=> AQCE là hình chữ nhật ( hình bình hành có 1 góc vuông là hình chữ nhật)

~~~~~~~~~~~~~~~~my love~~~~~~~~

k chắc nha , chỗ nào k hỏi add + ib hỏi mk ,

22 tháng 11 2016

A B C H M N F E G I K

22 tháng 11 2016

I dont know bitch

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.a) CM: OEFC là hình thangb) CM: OEIC là hình bình hành.c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu...
Đọc tiếp

Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!

Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.

a) CM: OEFC là hình thang

b) CM: OEIC là hình bình hành.

c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật. 

d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)

 

Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.

a) CM: ADCH là hình chữ nhật.

b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.

c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.

d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)

 

Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.

a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.

b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.

c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)

1
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE