K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2016

\(=x^4-xy+xy+x^2y-x^4-x^2y+3xy-xy.\)

\(=2xy\)

Thay  x = 1/4 , y = - 2005 ta được: 2xy = 2.1/4 .  ( - 2005 ) = -2005/2

7 tháng 6 2016

tớ tính mà sao ra số không nguyên

8 tháng 6 2016

\(A=x\left(x^3-y\right)+xy+x^2\left(y-x^2\right)-y\left(x^2-3x\right)-yx=\)

\(=x^4-xy+xy+x^2y-x^4-yx^2+3xy-xy=2xy\)

Với \(x=\frac{1}{4};y=-2005\)thì \(A=2\cdot\frac{1}{4}\cdot\left(-2005\right)=-\frac{2005}{2}\)

25 tháng 7 2016

Bài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1\(\ge\)0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967\(\ge\)0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2\(\le\)0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

26 tháng 7 2016

ài 1:

a) A= x+ 4x + 5

=x2+4x+4+1

=(x+2)2+1$\ge$≥0+1=1

Dấu = khi x+2=0 <=>x=-2

Vậy Amin=1 khi x=-2

b) B= ( x+3 ) ( x-11 ) + 2016

=x2-8x-33+2016

=x2-8x+16+1967

=(x-4)2+1967$\ge$≥0+1967=1967

Dấu = khi x-4=0 <=>x=4

Vậy Bmin=1967 <=>x=4

Bài 2:

a) D= 5 - 8x - x

=-(x2+8x-5)

=21-x2+8x+16

=21-x2+4x+4x+16

=21-x(x+4)+4(x+4)

=21-(x+4)(x+4)

=21-(x+4)2$\le$≤0+21=21

Dấu = khi x+4=0 <=>x=-4

b)đề sai à

20 tháng 8 2018

em không biết

20 tháng 8 2018

Ta có:

\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)

\(=x^3-xy-x^3-x^2y+x^2y-xy\)

=-2xy

Thay x=1/2 và y = -100 vào biểu thcws , ta được

\(-2\cdot\frac{1}{2}\cdot\left(-100\right)=100\)

Vậy ...
cho mk nhé

2 tháng 8 2019

Mọi người giúp em thêm bài 5abc, 8c với ạ!

8 tháng 12 2019

A = 3x ( x- 2x + 3) - x2 ( 3x - 2 ) + 5 ( x- x ) 

A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x

A = ( 3x- 3x) - ( 6x2 - 2x2 - 5x) + ( 9x - 5x )

A = x

8 tháng 12 2019

Làm tiếp nhé lúc nãy bị lỗi

A = x2 - 4x

Thay x = 5 vào A ta được

A = 52 - 4 . 5 = 5

\(\:x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5=5\)

Vậy biểu thức ko phụ thuộc vào biến x 

\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)+2x^4\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+y^3x-y^4+2x^4\)

\(=3x^4-y^4\)

9 tháng 7 2020

mọi người giúp em nhanh với