Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn:
+ Trên cạnh thứ nhất lấy hai điểm phân biệt A; B trên cạnh thứ hai lấy hai điểm C; D sao cho khoảng cách từ C; D đến đỉnh của góc lần lượt bằng khoảng cách từ đỉnh của góc với A, B
+ Xác định giao điểm I của BC và AD; tia vẽ từ đỉnh của góc qua I chính là tia phân giác của góc đó.
+ Phần chứng minh tương tự như bài 34
+ Trên cạnh thứ nhất lấy hai điểm phân biệt A; B trên cạnh thứ hai lấy hai điểm C; D sao cho khoảng cách từ C; D đến đỉnh của góc lần lượt bằng khoảng cách từ đỉnh của góc với A, B
+ Xác định giao điểm I của BC và AD; tia vẽ từ đỉnh của góc qua I chính là tia phân giác của góc đó.
+ Phần chứng minh tương tự như bài 34
vẽ góc d1Od2 bằng 60 độ
lấy A bất kì nằm trong góc d1Od2
kẻ AB vuông góc với d1O tại B
từ B kẻ BC vuông góc với Od2 tại C
Cách vẽ: Vẽ đường thẳng d1 và d2 cắt nhau tại O sao cho \(\widehat{d_1Od_2=60^0}\).Vẽ A nằm trong \(\widehat{d_1}Od_2\) .Qua A ,vẽ đoạn thẳng AB vuông góc với đường thẳng d1 tại điểm B. Qua B, vẽ đoạn thẳng BC vuông góc với đường thẳng d2 tại C.
a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có
IM=IN
CI chung
Do đó: ΔIMC=ΔINC
b: Xét ΔCKB có
M là trung điểm của BC
MN//KB
Do đó: N là trung điểm của CK
Thứ tự vẽ đường thẳng d' và d′⊥d như sau (xem hình vẽ).
- Đặt êke sao cho một mép góc vuông của êke đi qua điểm A, mép gấp vuông kia của êke nằm trên doạn thẳng d.
- Kẻ đoạn thẳng theo mép góc vuông của êke đi qua điểm A.
- Dùng êke kéo dài đoạn thẳng trên về hai phái thành đường thẳng d' vuông góc với d.
Minh họa cách vẽ đường thẳng d' đi qua điểm A và vuông gó với đường thẳng d cho trước chỉ bằng êke bằng hình vẽ sau đây:
.
Vẽ đường thẳng xy đi qua điểm O sao cho xy // a
Gọi tên các đỉnh như hình vẽ
Ta có \(\widehat{A1}=\widehat{B1}=38^0\)(vì xy//a ,so le trong)
Vì a//b mà xy//a \(\Rightarrow xy\)//b
Ta có \(\widehat{O2}+\widehat{B1}=180^0\)(vì xy//b,trong cùng phía)
Hay \(\widehat{O2}+132^0=180^0\)
\(\Rightarrow\widehat{O2}=180^0-132^0\)
Vậy \(\widehat{O2}=48^0\)
Ta có \(\widehat{O1}+\widehat{O2}=\widehat{AOB}\)
Hay \(38^0+48^0=x\)
Suy ra \(x=86^0\)
Đáp án bài 57:
Kẻ c//a qua O ⇒ c//b
Ta có: a//c ⇒ ∠O1 = ∠A1 ( So le trong)
⇒ ∠O1 = 380
b//c ⇒ ∠O2 + ∠B1 = 1800 ( Hai góc trong cùng phía)
⇒ ∠O2 = 480
Vậy x = ∠O1 + ∠O2 = 380 + 480 x = 860
a: Xét ΔABD và ΔHBD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên \(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
hay DH\(\perp\)BC