Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kẻ HD//AB, HE//AC
−>AD=HE;AE=AH
Theo BĐT trong tam giác :
AH < AE+HE = AE+AD
xét ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
−> HA+HB+HC < AE+AD+BE+DC = AB+AC
chứng minh tương tự:
HA+HB+HC<AB+BC
HA+HB+HC<AC+BC
-> có : 3(HA+HB+HC)<2(AB+AC+BC)
-> ( HA + HB + HC ) x \(\frac{3}{2}\) < AB + AC + BC
bây giờ mik làm có muộn lắm ko bạn???
Đầu tiên ta chứng minh: \(\frac{HA}{CA}.\frac{HB}{CB}+\frac{HB}{AB}.\frac{HC}{AC}+\frac{HC}{BC}.\frac{HA}{BA}=1\)
Đặt \(\frac{HA}{CB}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\) ta có: \(xy+yz+zx=1\)
Áp dụng bất đẳng thức Bu - nhi - a cho ba số x, y, z ta có: \(\left(xy+yz+zx\right)^2\le\left(x^2+y^2+z^2\right)^2\)
Hay \(\left(x^2+y^2+z^2\right)^2\ge1\Leftrightarrow x^2+y^2+z^2\ge1\)
Giả sử \(\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}=x+y+z\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx>1+2=3\)
Từ đó suy ra \(x+y+x\ge\sqrt{3}\Leftrightarrow\frac{HA}{BC}+\frac{HB}{CA}+\frac{HC}{AB}\ge\sqrt{3}\).
A B C E D F H I G
a) Qua H kẻ HG//AB cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.
=> HI vuông BH ; CH vuông HG
và AIHG là hình bình hành
Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)
Xét tam giác CHG vuông tại H => CH<CG
=> CH+BH + AH< BI+CG +AH
Ta lại có AH <AI+IH ( bất đẳng thức trong tam giác AIH)
mà IH=AG ( AIHG là hình bình hành theo cách vẽ )
=> AH < AI+AG
Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC
b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC)
Chứng minh tương tự như câu a.
Ta có: \(AB+AC>HA+HB+HC\)
\(BC+AC>HA+HB+HC\)
\(AB+BC>HA+HB+HC\)
Cộng theo vế ta có:
\(2AB+2AC+2BC>3HA+3HB+3HC\)
=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)
=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)
a)xét tam giác ABC có AD=DB, AE=EC => DE là đg` TB => DE//BC=> DE//BF
và DE=1/2BC=> DE= BF => BDEF là hbh
b) DE//BC => DE//KF => DEFK là hình thang(1)
DE//BC => DEF = EFC(SLT)
BDEF là hbh BD//EF => DBC=EFC (đồng vị) => DEF = DBC
DE//BC => EDK=DKB(SLT)
Xét tam giác ABK vg tại K có D là TĐ của AB=> KD là trung tuyến => KD=1/2AB=BD=> tam giác BDK cân tại D => DBC=DKB
=> KDE = DEF(2)
Từ (1) và (2) => DEFK là hình thang cân
Cái hình câu 1 logic lắm !!!
A B C D I 1 2 2 1 J M E
đáng lẽ cái đường thẳng E nó pk trùng với cái tia chéo kia ( tia tia tui vẽ cx chả đều => lười sửa )
phần còn lại tự giải quyết
hk tốt
ARMY (.) nha