Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc ACH chung
=>ΔACH đồng dạng với ΔBCA
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: góc EHD=góc EHA+góc DHA
=1/2*góc AHB+1/2*góc AHC=90 độ
góc EAD+góc EHD=180 độ
=>EADH nội tiếp
=>góc AED=góc AHD và góc ADE=góc AHE
mà góc AHD=góc AHE=45 độ
nên góc AED=góc ADE
=>AD=AE
xét tam giác KHI có HD là phân giác trong, ta được : DI/DK=IH/KH (1)
Cũng tam giác KHI có HE là phân giác ngoài do đó: EI/EK=IH/HK(2)
1 và 2 suy ra DI/DK=EI/EK
suy ra điều phải chứng minh thôi bạn
d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.
a, \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{ABC}=\widehat{AHB}=90^o\)
\(\widehat{BAC}\) chung
\(\Rightarrow \Delta ABC \sim \Delta HBA\) (g-g)
b, Ta có: \(\Delta ABC \sim \Delta HBA\) (g-g) \(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)\(\Rightarrow AB.AC=AH.BC\)
c, \(\Delta ABC\)có: \(\widehat{BAC}=90^o\)
\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)
hay \(10^2=6^2+AC^2\)
\(AC^2=64\)
\(AC=8\left(cm\right)\)
Ta có: \(\frac{AC}{AH}=\frac{BC}{AB}\left(cmt\right)\Leftrightarrow\frac{8}{AH}=\frac{10}{6}\Leftrightarrow AH=4,8\left(cm\right)\)
\(\Delta AHC\)có: \(\widehat{AHC}=90^o\)
\(\Rightarrow AC^2=AH^2+HC^2\)(định lý Py-ta-go)
hay \(8^2=4,8^2+HC^2\)
\(HC^2=40,96\)
\(HC=6,4\left(cm\right)\)
A B C H E F I K 1 1 1
a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=4,8\left(cm\right)\)
b) Xét tam giác AEH và tam giác AHB có:
\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)
c) Xét tam giác AHC và tam giác AFH có:
\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)
\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ )
\(\Rightarrow AH^2=AC.AF\)
d) Xét tứ giác AEHF có:
\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)
\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )
\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)
Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)
\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)
Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)
Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)
Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)
Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)
Xét tam giác ABC và tam giác AFE có:
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)
e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)
\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)
Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC
\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc) (6)
Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF
\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc) (7)
Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)
\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)