Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S=x+y;P=xy;\left(S^2\ge4\right)\), hệ viết lại : \(\begin{cases}S=1-2P\left(1\right)\\S^2-2P=1\left(2\right)\end{cases}\)
Thay (1) vào (2), ta được :
\(\left(1-2P\right)^2-2P=1\Leftrightarrow4P^2-6P=0\Leftrightarrow\left[\begin{array}{nghiempt}P=0\\P=\frac{3}{2}\end{array}\right.\)
* Khi \(P=0\) ta có \(S=0\), vậy \(x+y=1\) và \(xy=0\) suy ra \(x\) và \(y\) là nghiệm của phương trình \(t^2-t=0\Leftrightarrow\left[\begin{array}{nghiempt}t=0\\t=1\end{array}\right.\) do đó \(\begin{cases}x=0\\y=1\end{cases}\)\(;\begin{cases}x=1\\y=0\end{cases}\)
* Khi \(P=\frac{3}{2}\) ta có \(S=-2\) không thỏa mãn điều kiện \(S^2\ge4P\)
Kết luận : Hệ phương trình có 2 nghiệm là \(\left(x;y\right)=\left(0;1\right)\) và\(\left(x;y\right)=\left(1;0\right)\)
Lời giải
\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} \frac{xy+yz+xz}{y+z}=\frac{1}{2}\\ \frac{xy+yz+xz}{z+x}=\frac{1}{3}\\ \frac{xy+yz+xz}{x+y}=\frac{1}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{x+z}{y+z}=\frac{3}{2}\\ \frac{x+y}{x+z}=\frac{4}{3}\\ \frac{y+z}{x+y}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2x-3y-z=0\\ -x+3y-4z=0\\ -x+y+2z=0\end{matrix}\right.\Rightarrow 3x=5y=15z\)
Thay vào phương trình ban đầu: \(5z+\frac{3z.z}{3z+z}=\frac{1}{2}\Leftrightarrow z=\frac{2}{23}\Rightarrow x=\frac{10}{23},y=\frac{6}{23}\)
Thử lại thấy đúng
Vậy nghiệm của HPT là \((x,y,z)=(\frac{10}{23},\frac{6}{23},\frac{2}{23})\)
a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
ĐK: \(x+y\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)
Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)
\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)
\(\Leftrightarrow a^3-ab-a+b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)
Thay (3) vào (2) ta được
\(x^2-y=1\Leftrightarrow y=x^2-1\)
\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)
Giải (4)
Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)
do đó (4) không xảy ra
Vậy..........
\(\left(I\right)\begin{cases}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17\end{cases}\)
Ta thấy x=0 không thỏa mãn hệ (I).Đặt y=tx ta đc
\(\left(II\right)\begin{cases}x^2\left(3+2t+t^2\right)=11\left(1\right)\\x^2\left(1+2t+3t^2\right)=17\left(2\right)\end{cases}\)
Suy ra \(\frac{1+2t+3t^2}{3+2t+t^2}=\frac{17}{11}\Leftrightarrow4t^2-3t-10=0\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-\frac{5}{4}\end{array}\right.\)
- \(t=2\Rightarrow x^2=1\Rightarrow x=\pm1\Rightarrow y=\pm2\)
- \(t=-\frac{5}{4}\Rightarrow x^2=\frac{16}{3}\Rightarrow x=\pm\frac{4}{\sqrt{3}}\Rightarrow y=\pm\frac{5}{\sqrt{3}}\)
Vậy hệ (I) có bốn nghiệm là: \(\left(x;y\right)=\left(1;2\right),\left(-1;-2\right),\left(\frac{4}{\sqrt{3}};-\frac{5}{\sqrt{3}}\right),\left(-\frac{4}{\sqrt{3}};\frac{5}{\sqrt{3}}\right)\)
đặt \(\left\{{}\begin{matrix}S=X+Y\\P=X.Y\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}S+P=5\\S^2-P=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P=5-S\\S^2+S-12=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}P=5-S\\\left[{}\begin{matrix}S=-4\\S=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}S=-4\\P=9\end{matrix}\right.\\\left\{{}\begin{matrix}S=3\\P=2\end{matrix}\right.\end{matrix}\right.\)
suy ra tìm đc x và y
b,c tương tự
he 2 ma nhung 3 an giai bang niem tin
3 ẩn mà hệ 2 cạn lời đấy. :)))