K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

Đặt \(S=x+y;P=xy;\left(S^2\ge4\right)\), hệ viết lại : \(\begin{cases}S=1-2P\left(1\right)\\S^2-2P=1\left(2\right)\end{cases}\)

Thay (1) vào (2), ta được : 

\(\left(1-2P\right)^2-2P=1\Leftrightarrow4P^2-6P=0\Leftrightarrow\left[\begin{array}{nghiempt}P=0\\P=\frac{3}{2}\end{array}\right.\)

* Khi \(P=0\) ta có \(S=0\), vậy \(x+y=1\) và \(xy=0\) suy ra \(x\) và \(y\) là nghiệm của phương trình \(t^2-t=0\Leftrightarrow\left[\begin{array}{nghiempt}t=0\\t=1\end{array}\right.\) do đó \(\begin{cases}x=0\\y=1\end{cases}\)\(;\begin{cases}x=1\\y=0\end{cases}\)

* Khi \(P=\frac{3}{2}\) ta có \(S=-2\) không thỏa mãn điều kiện \(S^2\ge4P\)

Kết luận : Hệ phương trình có 2 nghiệm là \(\left(x;y\right)=\left(0;1\right)\) và\(\left(x;y\right)=\left(1;0\right)\)

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........

3 tháng 9 2019

em chưa học đến :)

3 tháng 9 2019

ok em

12 tháng 5 2016

Đặt \(-x=u\). Hệ phương trình đã cho chuyển thành :

\(\begin{cases}u^2+y^2+u+y=2\\-yu-\left(u+y\right)=-1\end{cases}\)\(\Leftrightarrow\begin{cases}u^2+y^2+u+y=2\\uy+\left(u+y\right)=1\end{cases}\) (*)

Đặt \(u+y=S;uy+P\) , điều kiện \(S^2\ge4P\). Thay vào (*), ta được :

\(\begin{cases}S^2-2P+S=2\\S+P=1\end{cases}\) \(\Leftrightarrow\begin{cases}P=1-S\\S^2+3S-4=0\end{cases}\)

\(\Leftrightarrow\begin{cases}S=1\\P=0\end{cases}\) hoặc \(\begin{cases}S=-4\\P=5\end{cases}\) (loại)

Vậy \(\begin{cases}u+y=1\\uy=0\end{cases}\) \(\Leftrightarrow u+y=1\) và \(\left[\begin{array}{nghiempt}y=0\\u=0\end{array}\right.\)

                            \(\Leftrightarrow\begin{cases}y=0\\u=1\end{cases}\) hoặc \(\begin{cases}u=0\\y=1\end{cases}\)

                            \(\Leftrightarrow\begin{cases}y=0\\x=-1\end{cases}\) hoặc \(\begin{cases}x=0\\y=1\end{cases}\)

Hệ có 2 nghiệm là \(\begin{cases}y=0\\x=-1\end{cases}\) và \(\begin{cases}x=0\\y=1\end{cases}\)

 

15 tháng 12 2016

ĐK: x khác 0

pt (2) \(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=13\)

Đặt \(a=x+\frac{1}{x};b=y+\frac{1}{y}\), hệ pt trở thành:

\(\begin{cases}a+b=5\\a^2+b^2=13\end{cases}\) giải hệ pt đối xứng loại I được

\(\begin{cases}a=2\\b=3\end{cases}\) hoặc \(\begin{cases}a=3\\b=2\end{cases}\)

Thế vào được tập nghiệm của hệ pt đã cho:

\(\left\{\left(1;\frac{3-\sqrt{5}}{2}\right);\left(1;\frac{3+\sqrt{5}}{2}\right);\left(\frac{3-\sqrt{5}}{2};1\right);\left(\frac{3+\sqrt{5}}{2};1\right)\right\}\)

16 tháng 12 2016

cam on minh da biet lam bai nay, truoc khi ban tra loi nen minh chua tick dung dau nhe ,mac du cach lam dung roi

11 tháng 5 2016

Điều kiện \(x\ne0;y\ne0\)

Đặt \(x+\frac{1}{x}=a;y+\frac{1}{y}=b\), khi đó :

\(x^2+\frac{1}{x^2}=a^2-2;y^2+\frac{1}{y^2}=b^2-2\)

Thay vào hệ phương trình ta được :

\(\begin{cases}a+b=5\\a^2+b^2=13\end{cases}\)\(\Leftrightarrow\begin{cases}a+b=5\\\left(a+b\right)^2-2ab=13\end{cases}\)\(\Leftrightarrow\begin{cases}a+b=5\\ab=6\end{cases}\)

Do đó a và b là nghiệm của phương trình : \(t^2-5t+6=0\Leftrightarrow\begin{cases}t=2\\t=3\end{cases}\) 

vậy \(\left(a;b\right)=\left(2;3\right);\left(a;b\right)=\left(3;2\right)\)

* Khi \(\begin{cases}a=2\\b=3\end{cases}\) ta có :

\(\begin{cases}x+\frac{1}{x}=2\\y+\frac{1}{y}=3\end{cases}\)\(\Leftrightarrow\begin{cases}x^2-2x+1=0\\y^2-3x+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=\frac{3\pm\sqrt{5}}{2}\end{cases}\)

* Khi \(\begin{cases}a=3\\b=2\end{cases}\) ta có :

\(\begin{cases}x+\frac{1}{x}=3\\y+\frac{1}{y}=2\end{cases}\)\(\Leftrightarrow\begin{cases}x^2-3x+1=0\\y^2-2x+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=1\\x=\frac{3\pm\sqrt{5}}{2}\end{cases}\)

Các nghiệm (x;y) là 

\(\left(1;\frac{3+\sqrt{5}}{2}\right);\left(1;\frac{3-\sqrt{5}}{2}\right);\left(\frac{3+\sqrt{5}}{2};1\right);\left(\frac{3-\sqrt{5}}{2};1\right)\)

 

 

 

a: \(\Leftrightarrow\left\{{}\begin{matrix}35x-28y=21\\35x-45y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-19\\5x-4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{19}{17}\\x=-\dfrac{5}{17}\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{8}{y}=18\\\dfrac{10}{x}+\dfrac{8}{y}=102\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{x}=120\\\dfrac{1}{x}-\dfrac{8}{y}=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{120}\\y=-\dfrac{44}{39}\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{30}{x-1}+\dfrac{3}{y+2}=3\\\dfrac{25}{x-1}+\dfrac{3}{y+2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}=1\\\dfrac{10}{y-1}+\dfrac{1}{y+2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=5\\\dfrac{1}{y+2}+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=-3\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{135}{2x-y}+\dfrac{160}{x+3y}=35\\\dfrac{135}{2x-y}-\dfrac{144}{x+3y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=8\\2x-y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+6y=16\\2x-y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)

14 tháng 5 2016

Từ phương trình ban đầu ta có :

      \(\begin{cases}x^3-2x^2+2x+1=2y\\y^3-2y^2+2y+1=2x\end{cases}\)  \(\Leftrightarrow\begin{cases}f\left(x\right)=2y\\f\left(y\right)=2x\end{cases}\) với \(f\left(t\right)=t^3-2t^2+2t+1\)

Ta có \(f'\left(t\right)=3t^2-4t+2>0\), với mọi \(t\in R\) nên f đồng biến trên R

* Nếu \(x>y\Rightarrow2x>2y\Rightarrow f\left(y\right)< f\left(x\right)\Rightarrow y>x\) (Mâu thuẫn)

* Nếu \(x< y\Rightarrow2x< 2y\Rightarrow f\left(y\right)< f\left(x\right)\Rightarrow y< x\) (Mâu thuẫn)

* Vậy \(x=y\) , ta có hệ phương trình ban đầu tương đương :

\(\begin{cases}x=y\\x^3-2x^2+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=y\\x\in\left\{1;\frac{1\pm\sqrt{5}}{2}\right\}\end{cases}\)

Vậy hệ phương trình đã cho có nghiệm :

\(\left(x;y\right)=\left(1;1\right);\left(\frac{1+\sqrt{5}}{2};\frac{1+\sqrt{5}}{2}\right);\left(\frac{1-\sqrt{5}}{2};\frac{1-\sqrt{5}}{2}\right)\)