Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(32^{50}\)và \(27^{51}\)
\(32^{50}=\left(32^2\right)^{25}=1024^{25}\)
\(27^{51}=\left(27^2\right)^{25}.27=729^{25}.27\)
Vì \(1024>729\)nên \(1024^{25}>729^{25}.27\)hay \(32^{50}>27^{51}\)
b) \(31^9\)và \(9^{16}\)
\(31^9=\left(91^3\right)^2=273^2\)
\(9^{16}=\left(9^2\right)^4=81^4=\left(81^2\right)^2=6561^2\)
Vì \(6561>273\)nên \(273^2< 6561^2\)hay \(31^9< 9^{16}\).
\(A=\frac{19^{30}+5}{19^{31}+5}=>19A=\frac{19^{31}+95}{19^{31}+5}=1+\frac{90}{19^{31}+5}\left(1\right)\)
\(B=\frac{19^{31}+5}{19^{32}+5}=>19B=\frac{19^{32}+95}{19^{32}+5}=1+\frac{90}{19^{32}+5}\left(2\right)\)
từ (1) and (2)
=>19A>19B
=>A>B
Ta có:
19A=19^31+95/19^31+5
19A= (19^31+5)+90/19^31+5
19A=1+90/19^31+5
19B=19^32+95/19^32+5
19B=(19^32+5)+90/19^32+5
19B=1+90/19^32+5
Vì: 90/19^31+5>90/19^31+5 nên 19A>19B hay A>B
\(\frac{22}{27}+\frac{37}{67}=\left(1-\frac{5}{27}\right)+\left(1-\frac{30}{67}\right)\)
\(\frac{31}{36}+\frac{377}{677}=\left(1-\frac{5}{36}\right)+\left(1-\frac{300}{677}\right)\)
+ \(\frac{5}{27}>\frac{5}{36}\Rightarrow1-\frac{5}{27}< 1-\frac{5}{36}\left(1\right)\)
+ \(\frac{30}{67}=\frac{300}{670}>\frac{300}{677}\Rightarrow1-\frac{30}{67}< 1-\frac{300}{677}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{22}{27}+\frac{37}{67}< \frac{31}{36}+\frac{377}{677}\)
Ta có : \(A=\frac{19^{30}+15}{19^{31}+15}\)
\(\Rightarrow19A=\frac{19^{31}+285}{19^{31}+15}=\frac{19^{31}+15+270}{19^{31}+15}=1+\frac{270}{19^{31}+15}\)
Lại có \(B=\frac{19^{31}+15}{19^{32}+15}\)
\(\Rightarrow19B=\frac{19^{32}+285}{19^{32}+15}=\frac{19^{32}+15+270}{19^{32}+15}=1+\frac{270}{19^{32}+15}\)
Vì \(\frac{270}{19^{32}+15}< \frac{270}{19^{31}+15}\Rightarrow1+\frac{270}{19^{32}+5}< 1+\frac{270}{19^{31}+15}\Rightarrow19B< 19A\Rightarrow B< A\)
\(\frac{7}{10}>\frac{5}{8}\)( quy đồng mẫu là thấy ngay nha bn )
\(\frac{21}{22}< \frac{2011}{2012}\)
\(\frac{2012}{6035}>\frac{31}{95}\)
Ta có : \(\frac{11}{54}=1-\frac{43}{54}\)
\(\frac{22}{37}=1-\frac{15}{37}\)
Vì \(\frac{43}{54}>\frac{15}{37}\)nên \(\frac{11}{54}< \frac{22}{37}\)