Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x + 1)2 + (x - 1)(x2 + x + 1) + (x - 1)3
= x2 + 2x + 1 + x3 - 1 + x3 - 3x2 + 3x - 1
= 2x3 - 2x2 + 5x + 1
2) (x - 2)2 + (2x + 1)2 + (x + 1)3
= x2 - 4x + 4 + 4x2 + 4x + 1 + x3 + 3x2 + 3x + 1
= x3 + 8x2 + 3x + 6
3) (x + 1)(x2 - x + 1) - (x - 3)2
= x3 + 1 - x2 + 6x - 9
= x3 - x2 + 6x - 8
4) (3x + 2)2 + (2x - 1)2 - (x + 3)2
= 9x2 + 12x + 4 + 4x2 - 4x + 1 - x2 - 6x - 9
= 12x2 + 2x - 4
Bài 3:
a: =>6x(x^2-4)=0
=>x(x-2)(x+2)=0
hay \(x\in\left\{0;2;-2\right\}\)
b: \(\Leftrightarrow9\left(x^2-1\right)-9x^2+6x-1=2\)
=>9x^2-9-9x^2+6x-1=2
=>6x-10=2
=>6x=12
=>x=2
Phân tích đa thức thành nhân tử:
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
Rút gọn biểu thức;
\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)
\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)
Tìm a để đa thức.. Bạn chia cột dọ thì da
\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)
B1 :
a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 = 100^2+100^2 = 20000
b, = (2x^2+16x+32)-2y^2
= 2.(x+4)^2-2y^2
= 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)
c, <=> (x^2-3x)+(2x-6) = 0
<=> (x-3).(x+2) = 0
<=> x-3=0 hoặc x+2=0
<=> x=3 hoặc x=-2
B2 :
P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x
k mk nha
Bai 1
a)B=(x+1)2+(y-2)2
Voi x=99,y=102
=>B= 1002+1002
=20000
b)\(2x^2-2y^2+16x+32\)
=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)
=\(2\left[\left(x+4\right)^2-y^2\right]\)
=2(x-y+4)(x+y+4)
c)\(x^2-3x+2x-6=0\)
=>x(x-3)+2(x-3)=0
=>(x-3)(x+2)=0
=>x=-2;3
Bai 2
\(P=\frac{9-x^2}{x^2-3x}\)
=\(-\frac{x^2-9}{x\left(x-3\right)}\)
=\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)
=\(\frac{-x-3}{x}\)
a) Ta có: \(\left(x-2\right).\left(x^2+2x+4\right)+\left(x-2\right)^3-\left(x-2\right).\left(x+2\right)\)
\(=\left(x^3-8\right)+\left(x-2\right)^3-\left(x^2-4\right)\)
\(=x^3-8+x^3-6x^2+12x-8-x^2+4\)
\(=2x^3-7x^2+12x-12\)
b) Ta có: \(\left(3-2x\right)^2-\left(x+3\right)^2-\left(2x+1\right)\left(2x-1\right)\)
\(=9-12x+4x^2-x^2-6x-9-4x^2+1\)
\(=3x^2-18x+1\)
\(=2x^3-7x^2+12x-12\)\(a.\left(x-2\right).\left(x^2+2x+4\right)+\left(x-2\right)^3-\left(x-2.\left(x+2\right)\right)\)
\(=\left(x^3-8\right)+\left(x-2\right)^3-\left(x^2-4\right)\)
~còn nữa~