K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

 đề bài ở đây là : phân tích đa thức thành nhân tử:

26 tháng 10 2016

\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)

\(=2x^3-3x-5x^3-x^2+x^2\)

\(=-3x^3-3x\)

26 tháng 10 2016

x (2x2-3)-x2(5x+1) + x2

= x[(2x2-3)-x(5x+1)+x]

=x(2x2-3-5x2-x+x)

=x(-3x2-3)

=-3x3-3x

21 tháng 10 2016

Bài 1 :

\(=\left(x^3-x\right)-\left(6x+6\right)\)

\(=x\left(x^2-1\right)-6\left(x+1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)

\(=\left(x^2-x\right)\left(x+1\right)-6\left(x+1\right)\)

\(=\left(x^2-x-6\right)\left(x+1\right)\)

21 tháng 10 2016

Bài 2 :

a) \(x^2+y^2=\left(x+y\right)^2-2xy=9+56=65\)

b) \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=-3\left(56+56\right)=-336\)

d) \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=56^2-2.\left(-28\right)^2=1568\)

20 tháng 12 2016

Tuyển " sư phụ "............................~~ K thành công !!! leuleu

26 tháng 12 2016

a)so 2 cuoi

27 tháng 12 2016

ban co tim dc 2 chu so tan cung kngoam

18 tháng 7 2016

giúp e vs ạ

8 tháng 8 2016

Ta có:  a +b +c = 0:

=> (a + b + c)2 = 0 
=> a² + b² + c² + 2(ab + bc + ca) = 0 
=> a² + b² + c² = -2(ab + bc + ca)    (1

Mặt khác:

a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²)    (cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

=> [-2(ab + bc + ca)]2 = 4(a²b² + b²c² + c²a²)  ( do (1) ) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> ĐPCM.hihi

10 tháng 9 2018

a) \(x^2-6x+3\)

\(=x^2-2.x.3+9-6\)

\(=\left(x-3\right)^2-\left(\sqrt{6}\right)^2\)

\(=\left(x-3-\sqrt{6}\right)\left(x-3+\sqrt{6}\right)\)

b) \(9x^2+6x-8\)

\(=\left(3x\right)^2+2.3x+1-9\)

\(=\left(3x+1\right)^2-3^2\)

\(=\left(3x+1-3\right)\left(3x+1+3\right)\)

\(=\left(3x-2\right)\left(3x+4\right)\)

10 tháng 9 2018

d) \(x^3+6x^2+11x+6\)

\(=x^3+3x^2+3x^2+9x+2x+6\)

\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3x+2\right)\)

\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)

\(=\left(x+3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)

e) \(x^3+4x^2-29x+24\)

\(=x^3+8x^2-4x^2-32x+3x+24\)

\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)

\(=\left(x+8\right)\left(x^2-4x+3\right)\)

\(=\left(x+8\right)\left(x^2-3x-x+3\right)\)

\(=\left(x+8\right)\left[x\left(x-3\right)-\left(x-3\right)\right]\)

\(=\left(x+8\right)\left(x-3\right)\left(x-1\right)\)