Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m-3\right)x+m^2-5m+6=0\)(1)
Để phương trình có hai nghiệm \(x_1,x_2\)thì:
\(\Delta'\ge0\Leftrightarrow\left(m-3\right)^2-\left(m^2-5m+6\right)=m^2-6m+9-\left(m^2-5m+6\right)=-m+3\ge0\)
\(\Leftrightarrow m\le3\)
Với \(m\le3\)phương trình (1) có hai nghiệm \(x_1,x_2\)nên theo định lí Viete ta có:
\(\hept{\begin{cases}x_1+x_2=2m-6\\x_1x_2=m^2-5m+6\end{cases}}\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-3\right)^2-2\left(m^2-5m+6\right)\)
\(=2m^2-14m+24=40\)
\(\Leftrightarrow m^2-7m-8=0\)
\(\Leftrightarrow\left(m-8\right)\left(m+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=8\left(l\right)\\m=-1\left(tm\right)\end{cases}}\)
Làm câu b)
Để phương trình có hai nghiệm phân biệt:
\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)
Áp dụng định lí Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)
Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)
Từ 1, 2 ta có:
\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)
Vậy ...
a, m=2
\(x^2-4x+3=0\)
=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
b, Phương trình có nghiệm
=> \(\Delta'\ge0\)
=> \(m^2-m^2+m-1\ge0\)=>\(m\ge1\)
Theo Vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{cases}}\)
Vì \(x_2\)là nghiệm của phương trình nên \(x^2_2-2mx_2+m^2-m+1=0\)=>\(2mx_2=x_2^2+m^2-m+1\)
Khi đó
\(\left(x_1^2+x_2^2\right)-3x_1x_2-3+m^2-m+1=0\)
=>\(\left(x_1+x_2\right)^2-5x_1x_2+m^2-m-2=0\)
=> \(4m^2-5\left(m^2-m+1\right)+m^2-m-2=0\)
=> \(m=\frac{7}{4}\)( thỏa mãn \(m\ge1\)
Vậy \(m=\frac{7}{4}\)
a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)
Để pt có nghiệm x1, x2 thì \(\Delta>0\)
\(\Leftrightarrow16-8m>0\)
\(\Leftrightarrow-8m>-16\)
\(\Leftrightarrow m< 2\)
b.
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow4^2-2.2m-4-16=0\)
\(\Leftrightarrow-4m-4=0\)
\(\Leftrightarrow m=-1\)
a.
Phương trình có 2 nghiệm khi:
\(\Delta'=4-2m\ge0\Rightarrow m\le2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow16-4m-4=16\)
\(\Leftrightarrow m=-1\) (thỏa mãn)