Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk làm bài 2 thui, bài 1 nhân ra rùi rút gọn đi là đc
a) \(5x^2-5y^2=5\left(x^2-y^2\right)=5\left(x-y\right)\left(x+y\right)\)
b) \(x^2-5xy+x-5y=x\left(x-5y\right)+\left(x-5y\right)=\left(x-5y\right)\left(x+1\right)\)
c) Phần này phải là \(x^2-y^2+4x+4y\)mới đúng, như vậy nó sẽ là :\(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)=\left(x+y\right)\left(x-y+4\right)\)
d) \(x^2-2x-y^2-2y=\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x+y\right)\left(x-y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
Chúc bạn hok tốt !
Bài 1 :
1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )
3) 4x2 + y2 + 4xy = ( 2x + y )2
Bài 2:
1) 2x2 + 8x = 0
=> 2x ( x + 4 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
2) 3 ( x - 4 ) + x2 - 4x = 0
=> 3 ( x - 4 ) + x ( x - 4 ) = 0
=> ( x - 4 ) ( 3 + x ) = 0
=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
3) 3 ( x - 2 ) = x2 - 2x
=> 3 ( x - 2 ) - x2 + 2x = 0
=> 3 ( x - 2 ) - x ( x - 2 ) = 0
=> ( x - 2 ) ( 3 - x ) = 0
=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
4) x ( x - 2 ) - 6 ( 2 - x ) = 0
=> x ( x - 2 ) + 6 ( x - 2 ) = 0
=> ( x - 2 ) ( x + 6 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
5) 2x ( x + 5 ) = x2 + 5x
=> 2x ( x + 5 ) - x2 - 5x = 0
=> 2x ( x + 5 ) - x ( x + 5 ) = 0
=> ( x + 5 ) ( 2x - x ) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
6 ) ( x - 2 )2 - x ( x + 3 ) = 9
=> x2 - 4x + 4 - x2 - 3x = 9
=> - 7x + 4 = 9
=> - 7x = 5
=> x = \(-\frac{5}{7}\)
\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)
\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)
\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(2,3\left(x-4\right)+x^2-4x=0\)
\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(3,3\left(x-2\right)=x^2-2x\)
\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)
\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)
\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
\(4,x\left(x-2\right)-6\left(2-x\right)=0\)
\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)
\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
a) 4x2-8x=0
(2x)2-2.2.2x+4-4=0
(2x-2)2 =4
2x-2=2
2x =4
x=2
Nhớ k cho mk nha
Bài 1 :
1) a2 - 4 + y ( a - 2 )
= ( a + 2 ) ( a - 2 ) + y ( a - 2 )
= ( a - 2 ) ( a + 2 + y )
2) ( x - 2 )2 - 9y2
= ( x - 2 - 3y ) ( x - 2 + 3y )
Bài 2 :
1) 3 ( x + 4 ) - 2x = 5
=> 3x + 12 - 2x = 5
=> x + 12 = 5
=> x = 5 - 12 = - 7
Vậy x = - 7
2) x ( x - 2 ) - x2 - 6 = 0
=> x2 - 2x - x2 - 6 = 0
=> - 2x - 6 = 0
=> 2x = - 6
=> x = \(-\frac{6}{2}=3\)
Vậy x = 3
3 ) x2 - 3x = 0
=> x ( x - 3 ) = 0
=> \(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x\in\left\{0;3\right\}\)
4) 5 - 3 ( x - 6 ) = 4
=> 5 - 3x + 18 = 4
=> 3x = 5 + 18 - 4
=> 3x = 19
=> x = \(\frac{19}{3}\)
Vậy \(x=\frac{19}{3}\)
Bài 1
a) \(3x\left(4x^2-2x+3\right)\)
\(=3x.4x^2-3x.2x+3x.3\)
\(=12x^3-6x^2+9x\)
b) \(\left(2x+5\right)^2-4x^2\)
\(=\left[\left(2x+5\right)-4x\right]\left[\left(2x+5\right)+4x\right]\)
\(=\left(2x+5-4x\right)\left(2x+5+4x\right)\)
\(=\left(-2x+5\right)\left(6x+5\right)\)
c) \(\left(x-2\right)^2+\left(x-3\right)\left(x+3\right)\)
\(=\left(x^2-2.x.2+2^2\right)+\left(x^2-3^2\right)\)
\(=\left(x^2-4x+4\right)+\left(x^2-9\right)\)
Bài 2
a) \(6x^2y+18x\)
\(=6x\left(xy+3\right)\)
b) \(x^2-7x+3x-21\)
\(=\left(x^2-7x\right)+\left(3x-21\right)\)
\(=x\left(x-7\right)+3\left(x-7\right)\)
\(=\left(x-7\right)\left(x+3\right)\)
c) \(x^2-4y^2+2x+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x^2+2.x.1+1^2\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1\right)^2-\left(2y\right)^2\)
\(=\left[\left(x+1\right)-2y\right]\left[\left(x+1\right)+2y\right]\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
d) \(x^2+3x-3y-y^2\)
\(=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x+y\right)+3\right]\)
\(=\left(x-y\right)\left(x+y+3\right)\)
Bài 3
a) \(\left(x+3\right)\left(x+2\right)-x\left(x+3\right)=10\)
\(\Rightarrow\left(x+3\right)\left[\left(x+2\right)-x\right]=10\)
\(\Rightarrow\left(x+3\right)\left(x+2-x\right)=10\)
\(\Rightarrow\left(x+3\right).2=10\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=2\)
b) \(\left(x+2\right)^2-\left(x-3\right)\left(x+3\right)=10\)
\(\Rightarrow\left(x^2+2.x.2+2^2\right)-\left(x^2-3^2\right)=10\)
\(\Rightarrow\left(x^2+4x+4\right)-\left(x^2-9\right)=10\)
\(\Rightarrow x^2+4x+4-x^2+9=10\)
\(\Rightarrow4x+13=10\)
\(\Rightarrow4x=-3\)
\(\Rightarrow x=-\frac{3}{4}\)
c) \(4x^2-25=0\)
\(\Rightarrow\left(2x\right)^2-5^2=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5\right)=0\)
\(\Rightarrow2x-5=0\) hoặc \(2x+5=0\)
\(\Rightarrow2x=5\) hoặc\(2x=-5\)
\(\Rightarrow x=\frac{5}{2}\) hoặc\(x=-\frac{5}{2}\)
d) \(2x\left(x+3\right)+x^2+3x=0\)
\(\Rightarrow2x\left(x+3\right)+x\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(2x+x\right)=0\)
\(\Rightarrow\left(x+3\right).3x=0\)
\(\Rightarrow x+3=0\) hoặc \(3x=0\)
\(\Rightarrow x=-3\) hoặc \(x=0\)
K MÌNH VỚI NHÉ
💕💕💕Thanks bn nhìu nhìu nha😻😻😻😻