Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇒{2008a+3b+12018a+2018a+b⇒{2008a+3b+12018a+2018a+b là hai số lẻ
Nếu a≠0⇒2008a+2018aa≠0⇒2008a+2018a là số chẵn
Để 2008a+2008a+b2008a+2008a+b lẻ ⇒b⇒b lẻ
Nếu bb lẻ ⇒3b+1⇒3b+1 chẵn
Do đó 2008a+3b+12008a+3b+1 chẵn (không thỏa mãn)
⇒a=0⇒a=0
Với a=0⇒(3b+1)(b+1)=225a=0⇒(3b+1)(b+1)=225
Vì b∈N⇒(3b+1)(b+1)=3.75=5.45=9.25b∈N⇒(3b+1)(b+1)=3.75=5.45=9.25
Do 3b+13b+1 ⋮/⋮̸ 33 và 3b+1>b+13b+1>b+1
⇒{3b+1=25b+1=9⇒{3b+1=25b+1=9⇒b=8⇒b=8
Vậy: {a=0b=8{a=0b=8
1.A)
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
\(xf\left(x-2\right)=\left(x+4\right)f\left(x+10\right)\)(*)
Thế \(x=0\)vào (*) ta được:
\(0f\left(0-2\right)=\left(0+4\right)f\left(0+10\right)\Leftrightarrow4f\left(10\right)=0\Leftrightarrow f\left(10\right)=0\)
Do đó \(x=10\)là một nghiệm của đa thức \(f\left(x\right)\).
Thế \(x=-4\)vào (*) ta được:
\(-4f\left(-4-2\right)=\left(-4+4\right)f\left(-4+10\right)\Leftrightarrow f\left(-6\right)=0\)
Do đó \(x=-6\)là một nghiệm của đa thức \(f\left(x\right)\).
Do đó \(f\left(x\right)\)có ít nhất hai nghiệm.
Thay x=1 ta được
(1-1).f(1)=(1+4).f(1+8)
<=>5.f(9)=0
<=>f(9)=0
suy ra 9 là nghiệm của f(x)
Thay x=-4 ta được:
(-4-1).f(-4)=(-4+4).F(-4+8)
<=>-5.f(-4)=0
<=>f(-4)=0
suy ra -4 là nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là -4 và 9
f (1) = (1-1). f (1) = (1+4).f (1+8)
\(\Rightarrow\)0 = 5 . f (9) Vậy 9 là 1 nghiệm của đa thức
f (-4) = ( -4-1 ) . f (-4) = (-4+4) . f (-4+8)
\(\Rightarrow\)-5 . f (-4) = 0 vậy -4 là một nghiệm của đa thức
Do đó f (x) có 2 nghiệm là 9 và -4.
Còn nhập TTĐ thì mình ko biết
f (1) = (1-1). f (1) = (1+4).f (1+8)
⇒0 = 5 . f (9) Vậy 9 là 1 nghiệm của đa thức
f (-4) = ( -4-1 ) . f (-4) = (-4+4) . f (-4+8)
⇒-5 . f (-4) = 0 vậy -4 là một nghiệm của đa thức
Do đó f (x) có 2 nghiệm là 9 và -4.
Còn nhập TTĐ thì mình ko biết
Vì (2x-4). F(x) = (x-1).F(x+1) với mọi x nên
+) Khi x=2 thì 0.F(2) = 1.F(3) => F(3) = 0
Vậy x=3 là một nghiệm của F(x).
+) Khi x = 1 thì -2F(1) = 0.F(2) => F(1) = 0
Vậy x = 1 là một nghiệm của F(x)
Do đó F (x) có ít nhất hai nghiệm là 3 và 1.
~ Chúc b học tốt nhaa~