Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3
a+5b=a-b+6b
vì:
a-b và 6b cùng chia hết cho 6 nên: a+5b chia hết cho 6 (đpcm)
b) a-13b=a-b-12b vì a-b và 12b cùng chia hết cho 6
=> a-13b chia hết cho 6 (đpcm)
Coi a là số tự nhiên nhỏ nhất
Bài 1 Khi chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3 suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6
hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)
Suy ra BCNN(3,4,5,6)=32. 23.5=360
BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)
a thuộc(358;718;1078,..)
Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078
Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0)
3n =(...9) (số tận cùng của 3n=9)
Ta có 3n+4+1=3n.34+1
=(...9).(...1) +1
= (...0) Vậy 3n+4+1 có tận cùng là 0
Suy ra 3n+4+1 là bội của 10
\(a,\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}\cdot(-2)^2\)
\(=\frac{6}{7}+\frac{5}{8}:\frac{5}{1}-\frac{3}{16}\cdot4\)
\(=\frac{6}{7}+\frac{5}{8}\cdot\frac{1}{5}-\frac{3}{16}\cdot4\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3\cdot4}{16}\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3\cdot1}{4}\)
\(=\frac{6}{7}+\frac{1}{8}-\frac{3}{4}=\frac{48+7-42}{56}=\frac{13}{56}\)
\(b,\frac{2}{3}+\frac{1}{3}\cdot\left[\frac{-2}{3}+\frac{5}{6}\right]:\frac{2}{3}\)
\(=\frac{2}{3}+\frac{1}{3}\cdot\left[\frac{-4+5}{6}\right]:\frac{2}{3}\)
\(=\frac{2}{3}+\frac{1}{3}\cdot\frac{1}{6}:\frac{2}{3}=\frac{2}{3}+\frac{1}{3}\cdot\frac{1}{6}\cdot\frac{3}{2}=\frac{2}{3}+\frac{1}{12}=\frac{8}{12}+\frac{1}{12}=\frac{9}{12}=\frac{3}{4}\)
c, Xem lại đề
d, \(\frac{-3}{5}+\left[\frac{-2}{5}-99\right]\)
\(=\frac{-3}{5}+\frac{-497}{5}=\frac{-500}{5}=-100\)
b, Tìm x
\(\left[\frac{2}{11}+\frac{1}{3}\right]\cdot x=\left[\frac{1}{7}-\frac{1}{8}\right]\cdot56\)
\(\Rightarrow\left[\frac{2}{11}+\frac{1}{3}\right]\cdot x=\left[\frac{8}{56}-\frac{7}{56}\right]\cdot56\)
\(\Rightarrow\left[\frac{6}{33}+\frac{11}{33}\right]\cdot x=1\)
\(\Rightarrow\frac{17}{33}\cdot x=1\)
\(\Rightarrow x=1:\frac{17}{33}=1\cdot\frac{33}{17}=\frac{33}{17}\)
Bài 1 :
a, Vì : các số chia hết cho 2 có tận cùng là các chữ số chẵn : 0;2;4;6;8
=> * \(\in\) { 0;2;4;6;8 }
b, Vì : các số chia hết có tận cùng là các chữ số 0 hoặc 5 .
=> * \(\in\) { 0;5 }
c, Để : 73* chia hết cho cả 2 và 5 thì tận cùng phải là 0
=> * = 0
Bài 2 :
Ta có : \(\overline{a97b}\) chia hết cho 5 => \(b\in\left\{0;5\right\}\)
+) Nếu : b = 0
Ta có :
\(\overline{a970}\) \(⋮\) 9
=> a + 9 + 7 + 0 \(⋮\) 9
=> a + 15 \(⋮\) 9
=> 9 + ( a + 6 ) \(⋮\) 9
Mà : 9 \(⋮\) 9 => a + 6 \(⋮\) 9
Mà : a là chữ số .
=> a + 6 = 9
=> a = 9 - 6
=> a = 3
Vậy a = 3
Bài 3 :
a, 100 - 7 ( x - 5 ) = 58
7 ( x - 5 ) = 100 - 58
7 ( x - 5 ) = 42
x - 5 = 42 : 7
x - 5 = 6
=> x = 6 + 5
=> x = 11
Vậy x = 11
b, 5x - 206 = 24 . 4
5x - 206 = 16 . 4
5x - 206 = 64
5x = 64 + 206
5x = 270
=> x = 270 : 5
=> x = 54
Vậy x = 54
c, 24 + 5x = 749 : 747
24 + 5x = 72
24 + 5x = 49
5x = 49 - 24
5x = 25
=> x = 25 : 5
=> x = 5
Vậy x = 5
mau giup minh di cac ban . tra loi minh se tich cho nha . cam on cac ban
Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1 (1)
Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1. (2)
Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:
\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)
Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)
Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)
Từ (1),(2) và (3) ta có đpcm.
Ta có: A = 1 + 3 + 32 + 33 +....+ 310
=> 3A = 3 + 32 + 33 + 34 + ..... + 311
=> 3A - A = 311 - 1
=> 2A = 311 - 1
=> 2A + 1 = 311
=> n = 11
( 5x+1 - 61 ) = 24 . 22
( 5x+1 - 61 ) = 26
( 5x+1 - 61 ) = 64
5x+1 = 64 + 61
5x+1 = 125
5x +1 = 53
x + 1 = 3
x = 3 - 1
x = 2
Em ghi lại đề đầy đủ, chính xác mới làm được!
em ghi lai r do a