Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có A+B+C = ∏∏
nên C=∏∏ -(A+B)
nên ta có sin(A+B)=sinC , cos(A+B)=-cosC
ta có sin2A+sin2B+sin2C
=2sin(A+B)cos(A-B) + 2 sinCcosC
=2sinCcos(A-B)+2sinCcosC
=2sinC ( cos(A-B) + cosC)
=2sinC ( cos(A-B) - cos(A+B))
=2sinC.2sinAsinB
=4sinAsinBsinC
Mẫn Li
Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)
Câu 2b sửa lại thì cm dễ thôi:
\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)
\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)
\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)
\(=cot^2a.cot^2b-1\)
(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))
Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:
\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)
Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=\frac{1}{sin^2a}\left(tan^3a-tana+cot^3a.tan^2a\right)\)
\(=\frac{1}{sin^2a}\left(tan^3a-tana+cota\right)=\left(1+cot^2a\right)\left(tan^3a-tana+cota\right)\)
\(=tan^3a-tana+cota+cot^2a.tan^3a-cot^2a.tana+cot^3a\)
\(=tan^3a-tana+cota+tana-cota+cot^3a\)
\(=tan^3a+cot^3a\)
\(sin^2A+sin^2B+sin^2C=2\)
\(\Leftrightarrow sin^2A+\dfrac{1-cos2B}{2}+\dfrac{1-cos2C}{2}=2\)
\(\Leftrightarrow sin^2A-\dfrac{1}{2}\left(cos2B+cos2C\right)=1\)
\(\Leftrightarrow1-cos^2A-cos\left(B+C\right)cos\left(B-C\right)=1\)
\(\Leftrightarrow cos^2A+cos\left(B+C\right)cos\left(B-C\right)=0\)
\(\Leftrightarrow cos^2A-cosA.cos\left(B-C\right)=0\)
\(\Leftrightarrow cosA\left[cosA-cos\left(B-C\right)\right]=0\)
\(\Leftrightarrow cosA.sin\left(\dfrac{A+B-C}{2}\right)sin\left(\dfrac{A+C-B}{2}\right)=0\)
\(\Leftrightarrow cosA.sin\left(90^0-C\right)sin\left(90^0-B\right)=0\)
\(\Leftrightarrow cosA.cosB.cosC=0\)
\(\Leftrightarrow\left[{}\begin{matrix}A=90^0\\B=90^0\\C=90^0\end{matrix}\right.\) hay tam giác ABC vuông