K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

2sin4x-cos4x=1/4

<=>2sin4x-(1-sin2x)2-1/4

<=>sin4x+2sin2x-5/4=0

<=> sin2x=1/2(nhận) hoặc sin2x=-5/2(loại)

=>cos2x=1-sin2x=1-1/2=1/2

thế vào biểu thức cần tính được kết quả =2

NV
7 tháng 6 2020

\(A=sin^6x+sin^4x.cos^2x+2\left(sin^2x.cos^4x+sin^4x.cos^2x\right)+cos^4x\)

\(=sin^4x\left(sin^2x+cos^2x\right)+2sin^2x.cos^2x\left(sin^2x+cos^2x\right)+cos^4x\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x\)

\(=\left(sin^2x+cos^2x\right)^2=1\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

a)

\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)

b)

\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)

\(=1-2\sin ^2x\cos ^2x\)

c)

\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)

\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)

\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

d)

\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)

\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)

\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)

e)

\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)

\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)

\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)

\(=1+2\sin x\cos x\)

-------------

P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)

NV
29 tháng 9 2020

d.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)

\(tan^4x-3tan^2x-4tanx-3=0\)

\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)

\(\Leftrightarrow tan^2x-tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)

28 tháng 9 2020

mọi người giúp hộ mình nhanh với

NV
7 tháng 5 2019

\(VT=2sin^6x-3cos^4x+1=2sin^6x+2cos^6x-3cos^4x-3sin^4x+1+3sin^4x-2cos^6x\)

Dài quá, không đủ viết chung 1 dòng, tách lẻ ra:

\(2\left(sin^6x+cos^6x\right)=2\left[\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\right]\)

\(=2-6sin^2x.cos^2x\)

\(-3\left(sin^4x+cos^4x\right)=-3\left(sin^2x+cos^2x\right)^2+6sin^2x.cos^2x\)

\(=-3+6sin^2x.cos^2x\)

\(\Rightarrow VT=2-6sin^2x.cos^2x-3+6sin^2x.cos^2x+1+3sin^4x-2cos^6x\)

\(=3sin^4x-2cos^6x\)

NV
6 tháng 4 2019

\(cos^2x\left(2sin^2x+cos^2x\right)=\left(1-sin^2x\right)\left(sin^2x+cos^2x+sin^2x\right)\)

\(=\left(1-sin^2x\right)\left(1+sin^2x\right)=1-sin^4x\)

8 tháng 4 2019
https://i.imgur.com/nJH4ePP.png
AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

a)

\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)

b)

\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)

\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)

c)

\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)

\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)

d)

\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)

\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)

e)

\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)

\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)

Ta có ddpcm.

19 tháng 7 2018

câu b nè : http://123link.pw/fGAhMX

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Bài 4:

$3x^4+10x^3-3x^2-10x+3=0$

Ta đi phân tích $3x^4+10x^3-3x^2-10x+3$ thành nhân tử

Đặt $3x^4+10x^3-3x^2-10x+3=(x^2+ax+b)(3x^2+cx+d)$ với $a,b,c,d$ là các số nguyên

$\Leftrightarrow 3x^4+10x^3-3x^2-10x+3=3x^4+x^3(c+3a)+x^2(d+ac+3b)+x(ad+bc)+bd$

Đồng nhất hệ số:

\(\Rightarrow \left\{\begin{matrix} c+3a=10\\ d+ac+3b=-3\\ ad+bc=-10\\ bd=3\end{matrix}\right.\). Từ $bd=3$. Giả sử $b=-1$

$\Rightarrow d=-3$. Thay vào hệ có được $ac=3; c+3a=10\Rightarrow a=3; c=1$

Vậy $3x^4+10x^3-3x^2-10x+3=(x^2+3x-1)(3x^2+x-3)$

$\Leftrightarrow (x^2+3x-1)(3x^2+x-3)=0$

\(\Rightarrow \left[\begin{matrix} x^2+3x-1=0\\ 3x^2+x-3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3\pm \sqrt{13}}{2}\\ x=\frac{-1\pm \sqrt{37}}{6}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Bài 3:

$x^4+4x^3+x^2-4x+1=0$

$\Leftrightarrow (x^4+4x^3+4x^2)-3x^2-4x+1=0$

$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)-x^2+1=0$

$\Leftrightarrow (x^2+2x)^2-2(x^2+2x)+1-x^2=0$

$\Leftrightarrow (x^2+2x-1)^2-x^2=0$

$\Leftrightarrow (x^2+x-1)(x^2+3x-1)=0$

\(\Rightarrow \left[\begin{matrix} x^2+x-1=0\\ x^2+3x-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{5}}{2}\\ x=\frac{-3\pm \sqrt{!3}}{2}\end{matrix}\right.\)

Vậy.......

NV
16 tháng 5 2019

\(2\left[\left(sinx+cosx+1\right)\left(sinx+cosx-1\right)\right]^2\)

\(=2\left[\left(sinx+cosx\right)^2-1\right]^2=2\left(sin^2x+cos^2x+2sinx.cosx-1\right)^2\)

\(=2\left(2sinx.cosx\right)^2=2sin^22x=1-cos4x\)

b/ \(\frac{3-4cos2a+2cos^22a-1}{3+4cos2a+2cos^22a-1}=\frac{2\left(cos^22a-2cos2a+1\right)}{2\left(cos^22a+2cos2a+1\right)}=\frac{\left(cos2a-1\right)^2}{\left(cos2a+1\right)^2}\)

\(\frac{\left(1-2sin^2a-1\right)^2}{\left(2cos^2a-1+1\right)^2}=\frac{4sin^4a}{4cos^4a}=tan^4a\)

c/ \(cos^22x+sin^22x-2sin2x.cos2x+2sin3x.cosx-2sinx.cosx-sin^2x\)

\(=1-sin4x+sin4x+sin2x-sin2x-sin^2x\)

\(=1-sin^2x=cos^2x\)

16 tháng 5 2019

Cảm ơn bạn nhiều lắm! khocroi