Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì Oz là phân giác của \(\widehat{xOy}\)(gt) \(\Rightarrow\widehat{xOz}=\widehat{yOz}\)(1)
Mà \(\hept{\begin{cases}\widehat{xOz}=\widehat{y'Ot}\\\widehat{yOz}=\widehat{x'Ot}\end{cases}\left(2\right)}\)( 2 góc đối đỉnh)
Từ (1),(2) ta có: \(\widehat{x'Ot}=\widehat{y'Ot}\)
Mà: Ot nằm giữa 2 tia Ox' và Oy'(đpcm)
\(\Rightarrow\)Ot là phân giác của \(\widehat{x'Oy'}\)
B E D F C A 50 40 140 H
Kéo dài AB, AB và FC cắt nhau tại H
Vì AB vuông với AC nên BAC = 90 độ
Ta có: BAC + CAH = 180 độ( kề bù)
=> 90 + CAH = 180
=> CAH = 180 - 90
=> CAH = 90
Áp dụng tính chất tổng 3 góc của 1 tam giác ta có:
HAC + ACH + AHC = 180
=> 90 + 40 + AHC = 180
=> 130 + AHC = 180
=> AHC = 180 - 130
= 50
Suy ra góc AHC = EAB = 50 độ
mà 2 góc này ở vị trí so le trong
=> EB // FC → ĐPCM
ABCtx
a) Xét △AMB và △AMC có:
AB = AC ( gt)
AM chung
BM = MC (gt)
\(\Rightarrow\) △AMB = △AMC (c.c.c)
b) Ta có : △AMB = △AMC
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) ( 2 góc tương ứng)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{BAC}\) (ĐPCM)
c) Ta có: \(\widehat{BMA}+\widehat{CMA}=180^o\) ( kề bù)
Mà \(\widehat{BMA}=\widehat{CMA}\) (△AMB = △AMC)
\(\Rightarrow\widehat{BMA}=\widehat{CMA}=\frac{180^o}{2}=90^o\)
\(\Rightarrow\) AM ⊥ BC (ĐPCM)
d) Gọi tia đối của tia AC là tia Ax.
Vì At là tia phân giác \(\widehat{xAB}\)
\(\Rightarrow\widehat{xAt}=\widehat{tAB}\)
Vì △ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Ta có :\(\widehat{xAB}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{xAt}+\widehat{tAB}=\widehat{ABC}+\widehat{ABC}\)
\(\Rightarrow2\widehat{tAB}=2\widehat{ABC}\)
\(\Rightarrow\widehat{tAB}=\widehat{ABC}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)At // BC (ĐPCM)
Bài 1
x x' y y' O ) 1 2 3 4 m n
a
Ta có:
\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)
\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)
\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)
b
Ta có:
\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)
\(\widehat{x'Oy}+\widehat{yOx}=180^0\)
\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)
\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)
\(\Rightarrowđpcm\)
Bài 2
A O B C D M
a
Ta có:
\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)
b
Ta có:
\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)
Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm
Phân nửa của 1/2 là :
1/2 : 2 = 1/4
Phân nửa của phân của 1/2 là :
1/4 : 2 = 1/8
Vậy phân nửa của phân của 1/2 là 1/8
1/4