Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)\left(x+2\right)< 0\) <=> x-1 và x+2 khác dấu
Mà x-1 < x+2 nên \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}=>\hept{\begin{cases}x< 1\\x>-2\end{cases}=>-2< x< 1}}\)
Vậy.........
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) <=> x-2 và x+2/3 cùng dấu
\(\left(+\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}=>\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}=>x< -\frac{2}{3}}}\)
\(\left(+\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}=>\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}=>x>2}}\)
Vậy x>2 hoặc x<-2/3
(x-1)(x-2)<0
=>
*)x-1>0 => x>1
x-2<0 => x<2
nên 1<x<2(TM)
*)x-1<0 => x<1
x-2>0 => x>2
2<x<1(KTM)
Vaaht để (x-1)(x-2)<0 thì 1<x<2
chia làm 2 trường hợp :
TH1 : x - 1 < 0 => x < 1
x - 2 > 0 => x > 2
=> loại
TH2 : x - 1 > 0 => x > 1
x - 2 < 0 => x < 2
=> 1 < x < 2
Vậy 1 < x < 2
chia 2 trường hợp:
+) x - 3 > 0 => x > 3
x + 4 < 0 => x < -4
=> Loại
+) x - 3 < 0 => x < 3
x + 4 > 0 => x > -4
=> -4 < x < 3
Vậy -4 < x < 3
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\)hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}\left(Loai\right)}\)
\(\Leftrightarrow-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{1}{2}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x+\frac{1}{2}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{1}{2}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< \frac{-1}{2}\end{cases}}\)
\(\Leftrightarrow x>2\)hoặc \(x< \frac{-1}{2}\)
Vậy \(\orbr{\begin{cases}x>2\\x< \frac{-1}{2}\end{cases}}\)
a, \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\text{ }\left(x+1\right)\text{ và }\left(x-2\right)\text{ trái dấu}\)
Mà \(x+1>x-2\)
\(\Rightarrow\text{ }\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) \(\Rightarrow\text{ }\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) \(\Rightarrow\text{ }-1< x< 2\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
b, \(\left(x-2\right)\left(x+\frac{1}{2}\right)>0\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x+\frac{1}{2}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{1}{2}< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{1}{2}\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{1}{2}\end{cases}}\)
\(x>2\) hoặc \(x< -\frac{1}{2}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)
Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)
=> \(-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .
\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn
a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu
Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)
=> -1 < x < 2
Vậy -1 < x < 2
b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu
Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy x>2 hoặc x < \(\frac{2}{3}\)
Lớn hơn thì nhân tử cùng dấu
Nhỏ hơn thì nhân tử trái dấu
=> Xét hai trường hợp
a, Xét x+2>0
2x-5>0
Giải ra x b , c tương tự