K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2023

Câu 7: Để tìm tỉ số tỉ lệ k, ta sử dụng công thức tỉ lệ thuận: y = kx. Từ điều kiện khi x = 2, y = 6, ta có: 6 = 2k và từ đó suy ra k = 3. Vậy đáp án là A: K=3.

Câu 8: Cách viết đúng là A: | 5 | = 5, vì giá trị tuyệt đối của 5 là chính nó.

Câu 9: Kết quả sai là A: √(−5)^2 = -5, vì căn bậc hai của một số không thể là số âm.

Câu 10: Số vô tỉ là B: -0,2(3), vì nó không thể biểu diễn dưới dạng phân số hữu tỉ và không thể được viết dưới dạng một số tỉ lệ.

Câu 11: So sánh hai số 0,16 và 0,(16): A: 0,16 > 0,(16), vì 0,16 là một số cố định nhưng 0,(16) có chu kỳ vô hạn và không lặp lại.

Câu 12: Kết quả sai là D: y/x = 3/2, vì khi sử dụng tỉ lệ thức x^2 = y^3, ta sẽ có y = √(x^2)3/2 = x^3/2.

Câu 13: Giá trị x thỏa 2/3 = x + 1 - 2 là:
B: 7/3

Câu 14: Biết rằng x/y = y/6 và 2x - y = 120, giá trị x và y là:
B: x = 103 và y = 86

Zzz 🐇

Câu 7: A

Câu 8: A

Câu 9: A

Câu 10: C

Câu 11: C

Câu 12: C

Câu 13: A

Câu 14: Bạn xem lại đề nha

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

*Giải giùm mình 7 câu Toán lớp 7 này nhé:-A.Nhận biết:Câu 1: Tìm x biếta)\(\frac{1}{5}+x=\frac{2}{3}\)b) -2x-3x+10=25c)\(\frac{x}{15}=\frac{-4}{5}\)d) (2x+4,2) - 3,6= 5,4e) \(\frac{x}{14}=\frac{27}{2}\)f) \(\frac{x}{5}=\frac{y}{9}\)và x+y=28Câu 2: Thực hiện phép tínha)\(\frac{9^4.27^5}{3^{21}}\)b) 47,57.15,36 + 15,36.52,43c) \(\frac{-3}{20}+\frac{-2}{15}\)d) 15 -\(\frac{5}{4}:\frac{15}{4}\)e) 0,5.\(\sqrt{\frac{1}{4}}\)- 0,25f) 1,25.\(\frac{3}{4}\)+...
Đọc tiếp

*Giải giùm mình 7 câu Toán lớp 7 này nhé:

-A.Nhận biết:

Câu 1: Tìm x biết

a)\(\frac{1}{5}+x=\frac{2}{3}\)

b) -2x-3x+10=25

c)\(\frac{x}{15}=\frac{-4}{5}\)

d) (2x+4,2) - 3,6= 5,4

e) \(\frac{x}{14}=\frac{27}{2}\)

f) \(\frac{x}{5}=\frac{y}{9}\)và x+y=28

Câu 2: Thực hiện phép tính

a)\(\frac{9^4.27^5}{3^{21}}\)

b) 47,57.15,36 + 15,36.52,43

c) \(\frac{-3}{20}+\frac{-2}{15}\)

d) 15 -\(\frac{5}{4}:\frac{15}{4}\)

e) 0,5.\(\sqrt{\frac{1}{4}}\)- 0,25

f) 1,25.\(\frac{3}{4}\)+ 1,25.\(\frac{1}{4}\)

-B.Thông hiểu:

Câu 1: Vẽ đồ thị hàm số y=2x; y=\(-\frac{1}{2}x\); y=-3x

Câu 2: 3 người làm cỏ mảnh vườn trong 24 giờ. Hỏi 9 người làm cỏ mảnh vườn đó bao nhiêu giờ? (Biết năng suất của mỗi người như nhau)

Câu 3: Cho hàm số y=f(x)=2x+1

a) Tính f(-1); f(1); f(0); f\(\left(\frac{1}{2}\right)\); f\(\left(-\frac{1}{2}\right)\)

b) Tìm x khi y = -2; -1; 1; 3; 5

Câu 4: Vẽ đường trung trực của đoạn thẳng AB dài 4cm (Nêu rõ cách vẽ)

Câu 5: Thực hiện phép tính:

a)\(\frac{-5}{13}+\left(\frac{-2}{11}\right)+\frac{5}{13}+\left(\frac{-9}{11}\right)\)

b) \(\left(7-\frac{2}{3}-\frac{1}{4}\right)-\left(\frac{-4}{3}-\frac{10}{4}\right)-\left(\frac{5}{4}-\frac{1}{3}\right)\)

c) \(15\frac{1}{5}:\left(\frac{-5}{7}\right)-2\frac{1}{5}.\left(\frac{-7}{5}\right)\)

Câu 6: Cho hàm số y = f(x) = x-2

a) Tính f(-1); f(0)

b) Tìm x để f(x) = 0

c) Điểm nào sau đây thuộc đồ thị của hàm số y = f(x) = x - 2. A(1;0), B(-1;-3), C(3;-1)

Câu 7: Số đo ba góc của một tam giác tỉ lệ với 2;3;4. Tính số đo mỗi góc của tam giác đó?

0
I, Trắc nghiệmCâu 1: Số nào sau đây = 5/2 ?A, 25/4     B, \(\sqrt{\frac{25}{-2}.\frac{-1}{2}}\)     C, \(-\sqrt{\frac{5^2}{2^2}}\)     D, \(\sqrt{\frac{3^2+4^2}{2}}\)Câu 2: Số tự nhiên x thỏa mãn (1/4)x = (1/8)4 : (1/2)2 là..........Câu 3: Nếu \(\sqrt{x-1}=2\) thì x2 = .....Câu 4: Nếu x : 3 = y: (-7) và x - y = 30 thì x = ..... và y = .....Câu 5: Cho hàm số y = f(x) = -3x2. Kết quả nào sau đây là sai?A, f(3) = 27     B, f(-1) = -f(1)...
Đọc tiếp

I, Trắc nghiệm

Câu 1: Số nào sau đây = 5/2 ?

A, 25/4     B, \(\sqrt{\frac{25}{-2}.\frac{-1}{2}}\)     C, \(-\sqrt{\frac{5^2}{2^2}}\)     D, \(\sqrt{\frac{3^2+4^2}{2}}\)

Câu 2: Số tự nhiên x thỏa mãn (1/4)x = (1/8)4 : (1/2)2 là..........

Câu 3: Nếu \(\sqrt{x-1}=2\) thì x2 = .....

Câu 4: Nếu x : 3 = y: (-7) và x - y = 30 thì x = ..... và y = .....

Câu 5: Cho hàm số y = f(x) = -3x2. Kết quả nào sau đây là sai?

A, f(3) = 27     B, f(-1) = -f(1)     C, f(0) - f(1) = 3     D, f(-2015) = f(2015)

Câu 6: Cho tam giác ABC = tam giác MNP có góc A = 50o; góc N = 70o. Số đo góc P là.......o

Câu 7:Tam giác ABC có góc A = 60o; góc C = 50o, BD là tia phân giác góc B (D thuộc AC)

Số đo góc ADB là .....o

Câu 8: Cho tam giác ABC và tam giác A'B'C' có góc B = góc B' ; góc C = góc C'

Để tam giác ABC = tam giác A'B'C' thì cần có thêm điều kiện nào sau đây?

A, BC = C'B'     B, AB = A'B'     C, AC = A'C'     D, góc A = góc A'

 

II, Tự luận

Câu 1: Tính hợp lí nếu có thể

a, \(\left(-3\right)^2.\frac{1}{3}-\left|-7\right|+\left(-5\right)^3:\sqrt{25}\)

b, \(3,5.\frac{4}{49}-\left[2,\left(4\right).2\frac{5}{11}\right]:\left(-8,4\right)\)

Câu 2: Tìm x biết

a, \(\sqrt{x}\left(x-\frac{1}{2}\right)-4\left(x-\frac{1}{2}\right)=0\)

b, \(\left(9x^2-1\right)^2+\left|x-\frac{1}{3}\right|=0\)

c, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\text{ và }x-2y+3z=141\)

Câu 3: Cho hàm số y = f(x) = (3m - 2)x

a, Tìm m biết điểm I(2; 8) thuộc đồ thị hàm số

b, Vẽ đồ thị hàm số với m vừa tìm đc, CMR: f(-2) + f(-4) = 3.f(-2)

Câu 4: Chia 210 quyển vở thành 4 phần sao cho: phần thứ nhất và thứ hai tỉ lệ với 2 và 3; phần thứ hai và thứ 3 tỉ lệ với 4 và 5; phần thứ 3 và thứ 4 tỉ lệ với 6 và 7. Tính số vở mỗi phần

Câu 5: Cho tam giác ABC. Gọi D là trung điểm AB; E là trung điểm BC. Trên tia đối của tia DE lấy điểm K sao cho DK = DE

a, CM: tam giác BDE = tam giác ADK và AK // BC

b, Gọi I là trung điểm AE. Chứng minh I là trung điểm KC

c, Giả sử góc A = 65o; góc C = 55o. Tính các góc B và D của tam giác BDE

Câu 6: Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) với a; b; c; x; y; z khác 0

CMR: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

0
1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là............... 2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai 3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\) e/\(x^2=0,81\) ...
Đọc tiếp

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là...............

2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai

3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\)

e/\(x^2=0,81\) g/\(\left(x-1\right)^2=1\dfrac{9}{16}\) h/\(\sqrt{3-2x}=1\) f/\(\sqrt{x}-x=0\)

4/Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\).CMR với x=\(\dfrac{16}{9}\) và x=\(\dfrac{25}{9}\) thì A có giá trị là số nguyên.

5/Tính:a/\(\sqrt{m^2}\) với \(m\ge0?\) b/\(\sqrt{m^2}\) với \(m< 0\)

6/Tính \(x^2\),biết rằng:\(\sqrt{3x}=9\)?

7/Tính:\(\left(x-3\right)^2\) biết rằng:\(\sqrt{x-3}=2\)?

8/Tính:a/\(2\sqrt{a^2}\) với \(a\ge0\) b/\(\sqrt{3a^2}\) với a<0 c/\(5\sqrt{a^4}\) với a<0 d/\(\dfrac{1}{3}\sqrt{c^6}\)với c<0

9/So sánh:A=\(\dfrac{25}{49}\) ; B=\(\dfrac{\sqrt{5^2}+\sqrt{25^2}}{\sqrt{7^2}+\sqrt{49^2}}\) ; C=\(\sqrt{\dfrac{5^2}{7^2}}\) ; D=\(\dfrac{\sqrt{5^2}-\sqrt{25^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

10/Cho P=\(-2019+2\sqrt{x}\) và Q=\(0,6-2\sqrt{x+3}\) a/Tìm GTNN của P? b/Tìm GTLN của Q?

11/Cho B=\(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\).Tìm số nguyên x để B có giá trị là một số nguyên?

12/a/Trong các giá trị của a là \(3,-4,0,10,-5\) giá trị thỏa mãn đẳng thức\(\sqrt{a^2}=a\)

b/Trong các giá trị của a là \(2,-6,0,1,-5\) giá trị thỏa mãn đẳng thức \(\sqrt{a^2}=|x|\)

6
AH
Akai Haruma
Giáo viên
31 tháng 7 2018

1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)

2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.

\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.

$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.

$C$ hiển nhiên đúng, theo định nghĩa.

Do đó áp án đúng là C.

AH
Akai Haruma
Giáo viên
31 tháng 7 2018

3)

a) \(-\sqrt{x}=(-7)^2=49\)

\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)

Do đó pt vô nghiệm.

b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)

e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)

g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)

\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)

\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)

h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)

f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)

\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)

4 tháng 9 2019

3,

a) (23+37):45+(13+47):45

= \(-\frac{5}{21}:\frac{4}{5}+\frac{5}{21}:\frac{4}{5}\)

= \(\left(-\frac{5}{21}+\frac{5}{21}\right):\frac{4}{5}\)

= \(0:\frac{4}{5}=0\)

4 tháng 9 2019

2,

a) \(\frac{-3}{4}\).\(\frac{12}{-5}\).(\(\frac{-25}{6}\))

= \(\frac{-3.4.3.\left(-5\right).5}{4.\left(-5\right).3.3}\)

= \(-5\)

b) (−2).\(\frac{-38}{21}\).\(\frac{-7}{4}\).(\(\frac{-3}{8}\))

= \(\frac{-2.\left(-38\right)\left(-7\right)\left(-3\right)}{\left(-7\right)\left(-3\right)\left(-2\right)\left(-2\right).8}\)

= \(\frac{19}{8}\)

c) (\(\frac{11}{12}:\frac{33}{16}\)).\(\frac{3}{5}\)

= \(\left(\frac{11}{12}.\frac{16}{33}\right).\frac{3}{5}\)

= \(\frac{4}{9}.\frac{3}{5}\)

= \(\frac{4}{15}\)

d) \(\frac{7}{23}\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left(\frac{-41}{10}\right)\)

= \(\frac{-287}{203}\)

3. Tính:

a) (\(\frac{-2}{3}+\frac{3}{7}\)):\(\frac{4}{5}\)+(\(\frac{-1}{3}+\frac{4}{7}\)):\(\frac{4}{5}\)

= (\(\frac{-2}{3}+\frac{3}{7}\)\(+\)\(\frac{-1}{3}+\frac{4}{7}\)) : \(\frac{4}{5}\)

= 0 : \(\frac{4}{5}\)

= 0

b) \(\frac{5}{9}\):(\(\frac{1}{11}-\frac{5}{22}\))+\(\frac{5}{9}\):(\(\frac{1}{15}-\frac{2}{3}\))

= \(\frac{5}{9}\): \(\frac{-3}{22}\)+ \(\frac{5}{9}\): \(\frac{-3}{5}\)

= \(\frac{5}{9}\): \(\frac{-81}{110}\)

= \(\frac{-550}{729}\)

11 tháng 7 2017

2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)

b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm

c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)

\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)

d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)

11 tháng 7 2017

1) tìm GTNN

a) \(B=\left|x-2017\right|+\left|x-20\right|\)

B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)

Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)

Vậy MinB = 1997 khi 20 \(\le x\le2017\)

b) \(C=\left|x-3\right|+\left|x-5\right|\)

\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)

Dấu " = " xảy ra khi 3 \(\le x\le5\)

Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)

c) \(C=\left|x^2+4\right|+3\)

Ta thấy \(x^2+4\ge0\) với mọi x

nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7

Dấu " =" xảy ra khi x = 0

MinC = 7 khi và chỉ khi x = 0

27 tháng 11 2022

a: \(=\left(\dfrac{1}{4}+\dfrac{3}{4}\right)\cdot\dfrac{18}{5}-\dfrac{6}{5}:\dfrac{-9}{5}+4\)

\(=\dfrac{18}{5}-\dfrac{6}{5}\cdot\dfrac{-5}{9}+4\)

\(=\dfrac{18}{5}+\dfrac{2}{3}+4\)

\(=\dfrac{124}{15}\)

b: \(=\dfrac{9}{25}\cdot\left(\dfrac{3}{5}-\dfrac{1}{5}+\dfrac{1}{2}\right)-\dfrac{3}{8}:\dfrac{9}{8}\)

\(=\dfrac{9}{25}\cdot\dfrac{4}{10}-\dfrac{1}{3}\)

\(=-\dfrac{71}{375}\)

c: \(=\dfrac{7}{10}:\dfrac{4}{5}+\dfrac{2}{9}:\dfrac{5}{9}+\dfrac{1}{8}\)

\(=\dfrac{7}{10}\cdot\dfrac{5}{4}+\dfrac{2}{5}+\dfrac{1}{8}\)

=1+2/5

=7/5

d: \(=\dfrac{3}{7}\left(19+\dfrac{1}{3}-33-\dfrac{1}{3}\right)-\dfrac{2}{7}=\dfrac{3}{7}\cdot\left(-14\right)-\dfrac{2}{7}=-6-\dfrac{2}{7}=\dfrac{-44}{7}\)

e: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{-2^{11}\cdot3^{11}-2^{12}\cdot3^{12}}\)

\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{-2^{11}\cdot3^{11}\left(1+2\cdot3\right)}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)