K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2021

a) Gọi 3 số chẵn liên tiếp lần lượt là: \(2x,2x+2,2x+4\)

Theo đề bài ta có phương trình:

       \(\left(2x+2\right)\left(2x+4\right)-2x\left(2x+2\right)=192\Rightarrow4x^2+12x+8-4x^2-4x=192\Rightarrow8x=184\Rightarrow x=23\)

Vậy 3 số chẵn liên tiếp đó lần lượt là: 46, 48, 50

b) Gọi 4 số tự nhiên liên tiếp đó lần lượt là: x, x+1, x+2, x+3

Theo đề bài ta có phương trình: 

\(\left(x+2\right)\left(x+3\right)-x\left(x+1\right)=146\Rightarrow x^2+5x+6-x^2-x=146\Rightarrow4x=140\Rightarrow x=35\)

Vậy 4 số tự nhiên liên tiếp đó lần lượt là: 35,36,37,38

20 tháng 8 2021

cảm ơn bạn

 

12 tháng 3 2017

thiếu đề

11 tháng 5 2017

ta sẽ làm gì với cái này :D

11 tháng 5 2017

bạn làm hôj mjk

3 tháng 3 2017

a) Gọi \(A=1-x^2\)

Ta có: \(x^2\ge0\Rightarrow-x^2\le0\Rightarrow A=1-x^2\le1\)

Dấu " = " khi \(x^2=0\Rightarrow x=0\)

Vậy \(MAX_A=1\) khi x = 0

b) Đặt \(B=-3y^2\)

Ta có: \(3y^2\ge0\Rightarrow-3y^2\le0\)

Dấu " = " khi \(-3y^2=0\Rightarrow y=0\)

Vậy \(MAX_B=0\) khi y = 0

c) Đặt \(C=10-\left(2x-1\right)^2\)

Ta có: \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow-\left(2x-1\right)^2\le0\)

\(\Rightarrow10-\left(2x-1\right)^2\le10\)

Dấu " = " khi \(\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy \(MAX_C=10\) khi \(x=\frac{1}{2}\)

3 tháng 3 2017

kcj

Theo đề , ta có : \(12a=72b\)

\(\Rightarrow\dfrac{a}{72}=\dfrac{b}{12}\)\(a-b=80\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\dfrac{a}{72}=\dfrac{b}{12}=\dfrac{a-b}{72-12}=\dfrac{80}{60}=\dfrac{4}{3}\)

\(\Rightarrow a=\dfrac{4}{3}.72=96\)

\(\Rightarrow b=\dfrac{4}{3}.12=16\)

6 tháng 7 2017

Ta có: 12 . a = 72 . b => \(\dfrac{a}{72}=\dfrac{b}{12}\) và a - b = 80

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{72}=\dfrac{b}{12}=\dfrac{a-b}{72-12}=\dfrac{80}{60}=\dfrac{4}{3}\)

a = \(\dfrac{4}{3}.72=96\)

b = \(\dfrac{4}{3}.12=16\)

11 tháng 3 2017

Em vào đây nhé Vẽ hình trực tuyến trên hoc24 | Hướng dẫn tạo khóa học trên hoc24 | Học trực tuyến

12 tháng 3 2017

Vẽ hình trực tuyến trên hoc24 | Hướng dẫn tạo khóa học trên hoc24 | Học trực tuyến

Ấn vào cái chữ màu xanh nhé!

17 tháng 2 2017

Ta có : \(\left\{\begin{matrix}Q=-\left(x-7\right)^2-6\\-\left(x-7\right)^2\le0\\-6=-6\end{matrix}\right.\)

\(\Rightarrow Q=-\left(x-7\right)^2-6\le0-6=-6\)

Vậy GTLN của \(Q=-\left(x-7\right)^2-6\)\(-6\)

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)

để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Vậy.....

24 tháng 10 2017

\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)

28 tháng 7 2017

Bài 1:

x y m B A C 1 1 2 1

Qua B, vẽ tia Bm sao cho Bm // Ax

Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )

Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o

Ta có: góc B1 + góc B2 = góc ABC

Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )

=> góc B2 = 30o

Ta có: góc B2 + góc C1 = 30o + 150o = 180o

Mà hai góc này ở vị trí trong cùng phía

=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )

Ta lại có:

Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )

=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )

Bài 3:

A B C F E G N M H 1 2

a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )

+) Vì AH vuông góc với BC ( giả thiết )

=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )

+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC

=> 2 . AH < AB + AC

=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )

b) Chứng minh EF = BC

+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)

=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)

=> 2 . MG = BG

Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )

=> EM + MG = BG => EG = BG

+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )

=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)

=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)

=> 2 . GN = CG

Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )

=> FN + GN = CG => FG = CG

Góc G1 = góc G2 ( đối đỉnh )

Xét tam giác FEG và tam giác CBG có:

FG = CG ( chứng minh trên )

EG = BG ( chứng minh trên )

Góc G1 = góc G2 ( chứng minh trên )

=> tam giác FEG = tam giác CBG ( c.g.c )

=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )