K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)

15 tháng 9 2017

a) A=\(\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2004}=1-\dfrac{1}{2003.2004}\)

B = \(\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

\(\dfrac{1}{2003.2004}>\dfrac{1}{2004.2005}\)

\(\Rightarrow1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\)

Vậy A < B

b) \(\left(3X-2^4\right).7^5=2.7^6.\dfrac{1}{2009^0}\)

\(\left(3X-2^4\right).7^5=2.7^6.1\)

\(\left(3X-2^4\right).7^5=2.7^6\)

\(\left(3X-2^4\right).=2.7^6:7^5\)

\(3X-2^4=2.7\)

\(3X-16=14\)

\(3X=16+14=30\)

\(X=30:3=10\)

Vậy X = 10

15 tháng 9 2017

1/ \(A=\dfrac{2003.2004-1}{2003.2004}=\dfrac{2003.2004}{2003.2004}-\dfrac{1}{2003.2004}=1-\dfrac{1}{2003.2004}\)

\(B=\dfrac{2004.2005-1}{2004.2005}=\dfrac{2004.2005}{2004.2005}-\dfrac{1}{2004.2005}=1-\dfrac{1}{2004.2005}\)

\(1-\dfrac{1}{2003.2004}< 1-\dfrac{1}{2004.2005}\Leftrightarrow A< B\)

2/ \(\left(3x-2^4\right).7^5=2.7^6.\dfrac{1}{2009^0}\)

\(\Leftrightarrow\left(3x-2^4\right).7^5=2.7^6.1\)

\(\Leftrightarrow3x-2^4=2.7^6:7^5\)

\(\Leftrightarrow3x-2^4=2.7\)

\(\Leftrightarrow3x-16=14\)

\(\Leftrightarrow3x=30\)

\(\Leftrightarrow x=10\left(tm\right)\)

Vậy ..

6 tháng 3 2018

So sánh:\(\dfrac{237}{142}\)\(\dfrac{246}{151}\)

* Bài làm:

\(\dfrac{237}{142}\) > 1 => \(\dfrac{237}{142}\) > ​\(\dfrac{237+9}{142+9}\) hay \(\dfrac{237}{142}\) > \(\dfrac{246}{151}\)

5 tháng 5 2018

a) Giải tương tự bài 6.5 a)

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

1 tháng 8 2017

Ta có :

\(\dfrac{a}{b}=\dfrac{a.\left(b+d\right)}{b.\left(b+d\right)}=\dfrac{ab+bd}{b^2+bd}\)

\(\dfrac{a+c}{b+d}=\dfrac{b\left(a+c\right)}{b\left(b+d\right)}=\dfrac{ab+bc}{b^2+bd}\)

Ta so sánh :

\(\dfrac{ab+bd}{b^2+bd}\)\(\dfrac{ab+bc}{b^2+bd}\)

Vì cùng mẫu nên ta chỉ so sánh :

\(ab+bd\)\(ab+bc\)

\(\Rightarrow\) Ta tiếp tục so sánh :

\(bd\) và bc thì ta có : bd < bc (1)

Từ 1, suy ra :

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\dfrac{a}{b}< \dfrac{c}{d}\)

Suy ra : \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)pcm)

16 tháng 4 2017

Giải bài 41 trang 24 SGK Toán 6 Tập 2 | Giải toán lớp 6

16 tháng 4 2017

tính chất trên gọi là tính chất bắc cầu, ta so sánh hai phân số với một số (phân số) thứ 3.

Giải bài 41 trang 24 SGK Toán 6 Tập 2 | Giải toán lớp 6