Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x+1}{3}=\frac{5}{2}\)
\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)
2x= 15/2 - 1 = 13/2
x = 13/2 : 2
x = 13/4
b) 2x + 2x+1 + 2x+2 + 2x+3 = 480
2x.(1+ 2 +22 + 23) = 480
2x . 15 = 480
2x = 480 : 15 = 32
2x = 25 => x = 5
c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)
\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)
\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)
< = > 3x= -6 => x = -2
\(\frac{3x-11}{2}-\frac{x-3}{3}=\frac{1}{6}\)
\(\frac{3\times\left(3x-11\right)}{3\times2}-\frac{2\times\left(x-3\right)}{2\times3}=\frac{1}{6}\)
\(\frac{9x-33}{6}-\frac{2x-6}{6}=\frac{1}{6}\)
\(\frac{\left(9x-33\right)-\left(2x-6\right)}{6}=\frac{1}{6}\)
\(9x-33-2x+6=1\)
\(\left(9x-2x\right)-\left(33-6\right)=1\)
\(7x-27=1\)
\(7x=1+27\)
\(7x=28\)
\(x=\frac{28}{7}\)
\(x=4\)
Chúc bạn học tốt
\(PT\Leftrightarrow\frac{3.\left(3x-11\right)-2.\left(x-3\right)}{6}=\frac{1}{6}\)
<=> 3.(3x - 11) - 2.(x - 3) = 1
<=> 9x - 33 - 2x + 6 = 1
<=> 7x = 28
<=> x = 4
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)=1-2^{2016}< 1\)
=>đpcm
x | 7 | 9 | |||
x2 | 49 | 81 | |||
x2-49 | - | 0 | + | + | + |
x2-81 | - | - | - | 0 | + |
A | + | 0 | - | 0 | + |
dựa vào bảng ta có khi 7<x<9 thì A<0 vậy 7<x<9
b, ta có : \(\frac{2015}{1}\)+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+......+\(\frac{1}{2015}\)
=1+1+1+1......+1+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+.......+\(\frac{1}{2015}\)
(2015 số 1)
=1+(1+\(\frac{2014}{2}\))+(1+\(\frac{2013}{3}\))+........+(1+\(\frac{1}{2015}\))
=\(\frac{2016}{2016}\)+\(\frac{2016}{2}\)+\(\frac{2016}{3}\)+.........+\(\frac{2016}{2015}\)
=2016(\(\frac{1}{2016}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+.........+\(\frac{1}{2015}\))
a) ta có: \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)<=> \(\frac{1}{x}=\frac{1}{3}+\frac{y}{6}\)
<=> \(\frac{1}{x}=\frac{2+y}{6}\)<=> \(x\left(2+y\right)=6\)
Mà x, y nguyên => x và y+2 \(\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
thay vào ta tìm được các cặp x,y.
b) Ta có: \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)<=> \(\frac{3}{y}=\frac{5}{4}-\frac{x}{2}\)
<=> \(\frac{3}{y}=\frac{5-2x}{4}\)
<=> \(y\left(5-2x\right)=12\)
vì x,y nguyên , 5-2x luôn lẻ => 5-2x \(\inƯ_{\left(12\right)}=\left\{\pm1;\pm3\right\}\)
Thay vào ta tìm được các cặp x,y.
a) \(\frac{x-2}{3}=\frac{x+1}{4}\)
=> (x - 2).4 = 3.(x + 1)
=> 4x - 8 = 3x + 3
=> 4x - 3x = 3 + 8
=> x = 11
Vậy x = 11
b) \(2.\left(x+3\right)-\frac{1}{2}=x-1\)
=> \(2x+6-\frac{1}{2}=x-1\)
=> \(2x+\frac{11}{2}=x-1\)
=> \(2x-x=-1-\frac{11}{2}\)
=> \(x=-\frac{13}{2}\)
Vậy \(x=-\frac{13}{2}\)
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}=\frac{5}{6}\)
\(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{3}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{1}-\frac{1}{6}\)
\(=\frac{5}{6}\)
b) Ta có:
\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)
\(\Rightarrow B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)
\(\Rightarrow B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)
\(\Rightarrow B=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)}=\frac{1}{2017}\)
Vậy \(\frac{A}{B}=\frac{1}{2017}\)