Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài hình chữ nhật là x ( m ) ( x>7 )
=> Chiều rộng hình chữ nhật đó là: x-7 ( m )
Theo đề bài ta có pt:
\(x\left(x-7\right)=114\)
\(\Leftrightarrow x^2-7x-114=0\)
\(\Delta=\left(-7\right)^2-4.-114=505>0\)
\(\left\{{}\begin{matrix}x_1=\dfrac{7+\sqrt{505}}{2}\left(tm\right)\\x_2=\dfrac{7-\sqrt{505}}{2}\left(ktm\right)\end{matrix}\right.\)
=> Chiều rộng hình chữ nhật là: \(\dfrac{7+\sqrt{505}}{2}-7=\dfrac{-7+\sqrt{505}}{2}\left(m\right)\)
Gọi chiều dài của mảnh đất đó là x ( m; x > 20 ) và chiều rộng của mảnh đất là y ( m; x>y>0 ).
- Theo bài ra, ta có hệ pt:
\(\hept{\begin{cases}x-y=20\\xy=125\end{cases}}\)<=> \(\hept{\begin{cases}x=20+y\\\left(y+20\right)y=125\end{cases}}\)
<=>\(\hept{\begin{cases}x=20+y\\y^2+20y=125\end{cases}}\) <=> \(\hept{\begin{cases}x=20+y\\y^2+20y-125=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=20+y\\\left(y+25\right)\left(y-5\right)=0\end{cases}}\) <=> \(\hept{\begin{cases}x=20+y\\y=-25hoacy=5\end{cases}}\)
<=>\(\hept{\begin{cases}x=20+y\\y=5\end{cases}}\)( vì y > 0 ) <=>\(\hept{\begin{cases}x=25\\y=5\end{cases}}\)(TM)
Vậy CD của mảnh đất là 25m , CR của mảnh đất là 5m.
- Năm nay em mới lớp 8 nên chỗ nào chưa được mong chị thông cảm cho em nhé!
Gọi chiều rộng của mảnh đất ban đầu là x (m) với x>1
Chiều dài ban đầu của mảnh đất: \(x+3\) (m)
Diện tích ban đầu của mảnh đất: \(x\left(x+3\right)\)
Chiều dài lúc sau: \(x+3+2=x+5\left(m\right)\)
Chiều rộng lúc sau: \(x-1\) (m)
Diện tích lúc sau: \(\left(x-1\right)\left(x+5\right)\)
Do diện tích mảnh đất ko đổi nên ta có pt:
\(x\left(x+3\right)=\left(x-1\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+3x=x^2+4x-5\)
\(\Leftrightarrow x=5\left(m\right)\)
Vậy mảnh đất ban đầu rộng 5m, dài 8m
Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng là 6 m và diện tích hình chữ nhật bằng 280 m . Tinh chiều dài và chiều rộng của mảnh đất.
Giải
Gọi x ( m ) là chiều dài của mảnh đất hình chữ nhật ( x ∈ N* )
Suy ra chiều rộng của mảnh đất hình chữ nhật là: x - 6 ( m )
Vì diện tích mảnh đất hình chữ nhật là 280 m2 nên ta có phương trình:
x ( x - 6 ) = 280
⇔ x2 - 6x - 280 = 0
Ta có: △ = b'2 - ac = ( -3 )2 - 1 . ( -280 ) = 289
Vì △ = 289 > 0 nên phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-b'+\sqrt{\Delta}}{a}=\dfrac{-\left(-3\right)+\sqrt{289}}{1}=20\) ( nhận )
\(x_2=\dfrac{-b'-\sqrt{\Delta}}{a}=\dfrac{-\left(-3\right)-\sqrt{289}}{1}=-14\) ( loại )
Vậy chiều dài của mảnh đất hình chữ nhật là: 20 ( m )
Suy ra chiều rộng của mảnh đất hình chữ nhật là: 20 - 6 = 14 ( m )
Giải:
Gọi chiều dài của mảnh đất là a (m) (a>6)
Do chiều dài lớn hơn chiều rộng là 6m nên chiều rộng của mảnh đất là: a-6 (m)
Vì diện tích khu vườn là 280m nên ta có phương trình: a.(a-6)=280
<=> a^2-6a-280=0 (1)
Xét: Delta= (-6)^2 -4.(-280)=1156>0 => phương trình (1) luôn có 2 nghiệm phân biệt:
a1= 20 (thỏa mãn) và a2=-14 (loại)
Vậy chiều dài mảnh vườn là 20m và chiều rộng mảnh vườn là 20-6=14m
Gọi chiều dài và chiều rộng của mảnh vườn là: a, b ( \(0< a,b< 255\))
Theo bài ra ta có hệ phương trình: \(\hept{\begin{cases}ab=255\\a-b=2\end{cases}}\)
Đặt \(-b=c\)ta có: \(\hept{\begin{cases}a.\left(-c\right)=255\\a+c=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a.c=-255\\a+c=2\end{cases}}\)
\(\Rightarrow\)Hai số cần tìm là 2 nghiệm của phương trình: \(x^2-2x-255=0\)
Ta có: \(\Delta=\left(-2\right)^2-4.1.\left(-255\right)=4+1020=1024\)
\(\Rightarrow x_1=\frac{-\left(-2\right)+\sqrt{1024}}{2}=\frac{2+32}{2}=17\)
\(x_2=\frac{-\left(-2\right)-\sqrt{1024}}{2}=\frac{2-32}{2}=-15\)
Ta thấy: \(x_1=a=17\)và \(x_2=c=-15\)
mà \(c=-b\)\(\Rightarrow b=15\)
Vậy chiều dài của mảnh đất đó là 17m và 15m
Gọi chiều dài của mảnh vườn là x (m) (x > 4)
Chiều rộng của mảnh vườn là x – 4 (m)
Diện tích của mảnh vườn là 320 m2 nên ta có phương trình:
x(x - 4) = 320
⇔ x2 - 4x - 320 = 0
Δ' = 22 + 320 = 324, √(Δ') = 18
x1 = 2 + 18 = 20; x2 = 2 - 18 = -16
x2 = -16 không thỏa mãn điều kiện của ẩn
Vậy chiều dài của mảnh vườn là 20m
Chiều rộng của mảnh vườn là 16 m
Gọi chiều dài của mảnh vườn là x (m) (x > 4)
Chiều rộng của mảnh vườn là x – 4 (m)
Diện tích của mảnh vườn là 320 m2 nên ta có phương trình:
x(x - 4) = 320
⇔ x 2 − 4 x − 320 = 0 Δ ' = 2 2 + 320 = 324 , ( Δ ' = 18 x 1 = 2 + 18 = 20 ; x 2 = 2 − 18 = − 16
x 2 = - 16 không thỏa mãn điều kiện của ẩn
Vậy chiều dài của mảnh vườn là 20m
Chiều rộng của mảnh vườn là 16 m
Lời giải:
Gọi chiều rộng mảnh đất là $a$ (m) thì chiều dài mảnh đất là $a+8$ (m)
Diện tích: $a(a+8)=384$
$\Leftrightarrow a^2+8a-384=0$
$\Leftrightarrow (a-16)(a+24)=0$
$\Rightarrow a=16$ (do $a>0$)
Vậy chiều rộng mảnh đất là $16$ m, chiều dài mảnh đất là $16+8=24$ m
Gọi chiều rộng là x
Chiều dài là x+4
Theo đề, ta có: x(x+4)=96
=>x2+4x+4=100
=>x+2=10
=>x=8
Vậy: Chiều rộng là 8m; Chiều dài là 12m
tham khao
Gọi chiều rộng là x
Chiều dài là x+4
Theo đề, ta có: x(x+4)=96
=>x2+4x+4=100
=>x+2=10
=>x=8
Vậy: Chiều rộng là 8m; Chiều dài là 12m