Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(mx^2+\left(m+1\right)x-2m\le0\) (1)
Nếu \(m=0\) thì dễ thấy (1) có nghiệm \(x\le0\)
Xét \(m\ne0\) Khi đó (1) là bất phương trình bậc hai với a=m.
Ngoài ra, biệt thức
\(\Delta=9m^2+2m+1=\left(3m+\frac{1}{3}\right)^2+\frac{8}{9}>0\) \(\curlyvee m\in R\). Từ đó ta có ngay kết luận :
- Khi m < 0, bất phương trình (1) có tập nghiệm
T(1) = \(\left(x;\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)\(\cup\)\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};+\infty\right)\)
- Khi m = 0, bất phương trình (1) có tập nghiệm T(1) =R+
- Khi m>0, bất phương trình (1) có tập nghiệm
T(1)=\(\left(\frac{-m-1-\sqrt{9m^2+2m+1}}{2m};\frac{-m-1+\sqrt{9m^2+2m+1}}{2m}\right)\)
\(\Leftrightarrow\left(m-2\right)x>m^2-4=\left(m-2\right)\left(m+2\right)\)
nếu m =2 => 0.x > 0.4 => vô nghiệm
Nếu m> 2 => m-2 >0 chia hai vế cho m-2<0
\(\Rightarrow x>m+2\)
Nếu m<2 => m-2 <0 chia hai cho m-2 <0
\(\Rightarrow x< m+2\)
Kết luận:
Nếu m =2 Phương trình vô nghiêm
nếu m> 2 có nghiệm: \(x>m+2\)
nếu m<2 có nghiệm: \(x< m+2\)
Bạn có nhầm lẫn ở đâu ko nhỉ:
\(\Leftrightarrow-m^2>-4\Leftrightarrow m^2< 4\)
- Nếu \(-2< m< 2\Rightarrow\) BPT đúng với mọi \(x\in R\)
- Nếu \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) BPT vô nghiệm
(mx - 2)*(2mx - x + 1) = 0
tương đương với tuyển hai pt:
*mx - 2 = 0 (a)
+nếu m = 0: (a) vô nghiệm
+nếu m # 0: (a) có nghiệm x = 2 / m.
*2mx - x + 1 = 0
<=>(2m - 1)x + 1 = 0 (b)
+nếu m = 1 / 2: (b) vô nghiệm
+nếu m # 1/2: (b) có nghiệm x = -1 / (2m - 1)
*xét 2 / m = -1 /(2m - 1)
<=> m = 2 / 5.
Kết luận:
+nếu m = 0 => S = {1} (lấy được nghiệm của b)
+nếu m = 1 / 2 => S = {4}
+nếu m = 2 / 5 => S = {5}
+nếu m # 0; m # 1 /2 và m # 2 / 5 => S = {2/m , -1 /(2m-1)}
pt tương đương với:
(m2 - 1)x = m + 1
(m - 1)(m+1) x = m+ 1
- Với m = -1 , pt trở thành 0x = 0, có vô số nghiệm
- Với m = 1 , pt trở thành 0x = 2, vô nghiệm
- Với m#1 và m#-1 => m + 1 # 0 và m - 1 # 0 => x = 1/(m-1)
(mx-2)(2mx-x+1)=0
=>\(x^2\cdot2m^2-mx^2+mx-4mx+2x-2=0\)
=>\(x^2\left(2m^2-m\right)+x\left(-3m+2\right)-2=0\)
TH1: m=0
Phương trình sẽ trở thành: \(0x^2+x\cdot\left(-3\cdot0+2\right)-2=0\)
=>2x-2=0
=>x=1
TH2: m=1/2
Phương trình sẽ trở thành: \(0x^2+x\left(-3\cdot\dfrac{1}{2}+2\right)-2=0\)
=>1/2x-2=0
=>x=4
TH3: \(m\notin\left\{0;\dfrac{1}{2}\right\}\)
Phương trình sẽ là \(x^2\left(2m^2-m\right)+x\left(-3m+2\right)-2=0\)
\(\text{Δ}=\left(-3m+2\right)^2-4\left(2m^2-m\right)\cdot\left(-2\right)\)
\(=9m^2-12m+4+8\left(2m^2-m\right)\)
\(=9m^2-12m+4+16m^2-8m\)
\(=25m^2-20m+4=\left(5m-2\right)^2\)>=0 với mọi m
Phương trình sẽ có hai nghiệm phân biệt khi 5m-2<>0
=>m<>2/5
Phương trình sẽ có nghiệm kép khi 5m-2=0
=>\(m=\dfrac{2}{5}\)
ta có : \(\left(m-1\right)\left(mx+1\right)>0\)\(\Leftrightarrow m^2x+m-mx-1>0\)
\(\Leftrightarrow m^2x-mx>1-m\) \(\Leftrightarrow x\left(m^2-m\right)>1-m\)
(*) \(m^2-m>0\Leftrightarrow m^2>m\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
\(\Rightarrow x\left(m^2-m\right)>1-m\Leftrightarrow x>\dfrac{1-m}{m^2-m}=\dfrac{-1}{m}\)
\(\Rightarrow S=\left(\dfrac{-1}{m};+\infty\right)\)
(*) \(m^2-m< 0\Leftrightarrow m^2< m\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-1\\m\ne0\end{matrix}\right.\Leftrightarrow-1< m< 1+m\ne0\)
\(\Rightarrow x\left(m^2-m\right)>1-m\Leftrightarrow x< \dfrac{1-m}{m^2-m}=\dfrac{-1}{m}\) \(\Rightarrow S=\left(-\infty;\dfrac{-1}{m}\right)\)(*) \(m^2-m=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
+ \(m=0\) \(\Rightarrow x\left(m^2-m\right)>1-m\Leftrightarrow0>1\left(vôlí\right)\)+ \(m=1\)
\(\Rightarrow x\left(m^2-m\right)>1-m\Leftrightarrow0>0\left(vôlí\right)\)\(\Rightarrow S=\varnothing\)
vậy ................................................................................................................