Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{42}=\sqrt{3\cdot14}>\sqrt{3\cdot12}=6\\ \sqrt[3]{51}=\sqrt[3]{17}< \sqrt[3]{3\cdot72}=6\\ \Rightarrow\sqrt{42}>\sqrt[3]{51}\\ b,16^{\sqrt{3}}=4^{2\sqrt{3}}\\ 18>12\Rightarrow3\sqrt{2}>2\sqrt{3}\Rightarrow4^{3\sqrt{2}}>4^{2\sqrt{3}}\\ \Rightarrow4^{3\sqrt{2}}>16^{\sqrt{3}}\)
\(c,\left(\sqrt{16}\right)^6=16^3=4^6=4^2\cdot4^4=4^2\cdot16^2\\ \left(\sqrt[3]{60}\right)^6=60^2=4^2\cdot15^2\\ 4^2\cdot16^2>4^2\cdot15^2\Rightarrow\sqrt{16}>\sqrt[3]{60}\Rightarrow0,2^{\sqrt{16}}< 0,2^{\sqrt[3]{60}}\)
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
a) \(1,2^{1,5}=1,314534\)
b) \(10^{\sqrt{3}}=53,957374\)
c) \(\left(0,5\right)^{-\dfrac{2}{3}}=1,587401\)
a) Sử dụng máy tính cầm tay ta có: \(cos1,16 \approx 0,4\)nên \(cosx = cos1,16\) do đó các nghiệm của phương trình là \(x = 1,16 + k2\pi \) hoặc \(x = -1,16 + k2\pi \)với \(k\; \in \;\mathbb{Z}\).
Vậy tập nghiệm của phương trình là \(S = \{ 1,16 + k2\pi ;-1,16 + k2\pi ,k\; \in \;\mathbb{Z}\} \).
b) Sử dụng máy tính cầm tay ta có: \(tanx{\rm{ }} = \;\sqrt 3 \) nên \(tanx = \;tan\frac{\pi }{3} \Leftrightarrow x = \;\frac{\pi }{3} + k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)
Vậy tập nghiệm của phương trình là \(S = \;\left\{ {\frac{\pi }{3} + k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}} \right\}.\)
a: \(3^{r1}=3^1=3\)
\(3^{r2}\simeq3^{1.4}\simeq\text{4 , 655536722}\)
\(3^{r3}\simeq3^{1.41}\simeq\text{4 , 706965002}\)
\(3^{r4}=3^{1.4142}\simeq4,\text{72873393}\)
\(3^{\sqrt{2}}=\text{4 , 728804388}\)
b: \(\left|3^{\sqrt{2}}-3^{r1}\right|=\text{4 , 728804388 − 3 = 1 , 728804388 }\)
\(\left|3^{\sqrt{2}}-3^{r2}\right|=\text{4,728804388-4,655536722=0,07326766609}\)
\(\left|3^{\sqrt{2}}-3^{r3}\right|=\text{4,728804388 − 4,706965002 = 0,02183938612 }\)
\(\left|3^{\sqrt{2}}-3^{r4}\right|=\text{4,728804388−4,72873393=0,0000704576662}\)
=>Khi n càng tăng dần thì sai số tuyệt đối càng giảm
\(5^x=3\Leftrightarrow x=log_53\\ 3^y=5\Leftrightarrow y=log_35\\ \Rightarrow xy=log_53\cdot log_35=1\)
\(2\sqrt{3}=\sqrt{12}< \sqrt{18}=3\sqrt{2}\)
=>\(2^{2\sqrt{3}}< 2^{3\sqrt{2}}\)