Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\alpha= 0\) \(\Rightarrow F = F_1+F_2 = 16+12=28N\)
\(\alpha = 30^0\)\(\Rightarrow F^2=16^2+12^2+2.16.12.\cos30^0=...\Rightarrow F\)
Các trường hợp khác bạn tự tính nhé.
Bài 2:
Ta có: \(F_1=k.\Delta \ell_1=k.(0,24-0,12)=0,12.k=5\) (1)
\(F_1=k.\Delta \ell_2=k.(\ell-0,12)=10\) (2)
Lấy (2) chia (1) vế với vế: \(\dfrac{\ell-0,12}{0,12}=2\)
\(\Rightarrow \ell = 0,36m = 36cm\)
Bài 3:
Áp lực lên sàn: \(N=P=mg\)
Áp dụng định luật II Niu tơn ta có: \(F=m.a\Rightarrow -F_{ms}=ma\)
\(\Rightarrow a = \dfrac{-F_{ms}}{m}= \dfrac{-\mu.N}{m}== \dfrac{-\mu.mg}{m}=-\mu .g =- 0,1.10=-1\)(m/s2)
Quãng đường vật đi được đến khi dừng lại là \(S\)
Áp dụng công thức độc lập: \(v^2-v_0^2=2.a.S\)
\(\Rightarrow 0^2-10^2=2.1.S\Rightarrow S = 50m\)
Vì vật chuyển động đều
\(\Rightarrow\overrightarrow{F}+\overrightarrow{N}+\overrightarrow{P}+\overrightarrow{F_{ms}}=\overrightarrow{0}\)
Chọn trục toạ độ có trục hoành hướng sang phải, trục tung hướng lên
\(\Rightarrow\left\{{}\begin{matrix}Ox:F.\cos\alpha-F_{ms}=0\\Oy:F.\sin\alpha+N-P=0\end{matrix}\right.\)
\(\Rightarrow F.\cos\alpha-\mu.\left(P-F.\sin\alpha\right)=0\)
\(\Leftrightarrow120.\cos60-\mu.\left(200-120.\sin60\right)=0\)
=> \(\mu=...\)
Tìm gia tốc trong trường hợp alpha= 300 thì lúc này vật chuyển động biến đổi đều nên có gia tốc, tức là \(\overrightarrow{F}+\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a}\)
Cậu chiếu lên trục toạ độ rồi phân tích, bt hệ số ma sát rồi thì tìm a ez
500g=0,5kg
chọn chiều dương phương thẳng đứng hướng xuống dưới
\(\overrightarrow{\Delta p}=\overrightarrow{p'}-\overrightarrow{p}\)
\(\Leftrightarrow\overrightarrow{\Delta p}=m.\overrightarrow{v_2}-m.\overrightarrow{v_1}\)
chiếu lên chiều dương
\(\Delta p=-m.sin\alpha.v_2-m.sin\alpha.v_1\)
a) với \(\alpha=30^0\)\(\Rightarrow\Delta p=\)-5kg.m/s
lực do sàn tác động lên
F=\(\dfrac{\Delta p}{\Delta t}\)=-50N
b) với \(\alpha=90^0\)\(\Rightarrow\Delta p=\)-10kgm/s
lực do sàn tác động lên
F=\(\dfrac{\Delta p}{\Delta t}\)=-100N
câu1
ta có Wđ=1\2.m.v2
=>1\2.1500. 102
wđ=75000J
2. (Trắc nghiệm) Khi một vật đang chuyển động thẳng đều, nếu có lực tác dụng cùng phương với vận tốc của vật sẽ làm cho động năng của vật:
A. tăng nếu lực cùng chiều chuyển động, giảm nếu lực ngược chiều chuyển động.
B. không đổi.
C. luôn tăng.
D. luôn giảm.
3. (Trắc nghiệm) Khi một vật đang chuyển động thẳng đều, nếu có lực tác dụng hợp với phương của vận tốc của vật một góc αα sẽ làm cho động năng của vật:
A. không đổi.
B. tăng nếu 0<α<9000<α<900, giảm nếu 90<α<180090<α<1800.
C. tăng.
D. giảm.
Ta có :
Trọng lực của thanh đặt ở trung điểm thanh (gọi G là trung điểm thanh AB)
Ta giải bài toán trong trường hợp tổng,
Áp dụng quy tắc momen trục quay tại B:
\(mg.BGsin\alpha=F.BA\)
\(\rightarrow F=mg\frac{BGsin\alpha}{BA}=50.10\frac{sin\alpha}{2}=250sin\alpha\)
Phản lực của tường phải cân bằng với F và P.
Phản lực theo phương ngang: \(N_x=F.sin\alpha\)
Phản lực theo phương thẳng đứng:\(N_y=mg-F.cos\alpha\)
Gọi góc hợp giữa phản lực và phương ngang là \(\phi\)
\(tan\phi=\frac{Ny}{Nx}=\frac{mg-Fcos\alpha}{Fsin\alpha}\)
\(=\frac{500-250sin\alpha.cosalpha}{250sinalpha^2}=\frac{2-sin\alpha.cosalpha}{sinalpha^2}\)
Độ lớn của phản lực:
\(N=\sqrt{N_x^2+N^2_y}=\sqrt{F^2+m^2g^2-2mgFcosalpha}\)
Trong 2 trường hợp góc α này chúng ta thay số và tìm các giá trị cần tìm
Ta có : \(T=\frac{2\pi}{\omega}\)
\(\omega=\frac{\Delta\alpha}{\Delta t}=\frac{\pi}{2\Delta t}\)
\(\rightarrow T=\frac{2\pi}{\frac{\pi}{2\Delta t}}=\frac{2\pi.2\Delta t}{\pi}=4\Delta t\)
=> \(\Delta t=\frac{T}{4}\)
Chọn D.