Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tổ là a ( a ∈ N* )
Theo đề ra , ta có :
27 ⋮ a và 18⋮a
⇒a ∈ ƯC(27,18)⇒a ∈ ƯC(27,18)
27 = 33
18 = 2 . 32
ƯCLN(24,18)=2.3=6ƯCLN(24,18)= 32 = 9
ƯC( 27,18 ) =Ư( 9 )={ 1;3;9 }ƯC(27,18)=Ư(9)={1;3;9}
Vậy có tất cả 3 cách chia .
Vì : số học sinh mỗi tổ ít nhất
⇒a=ƯCLN(27,18)
Mà : ƯCLN(27,18) = 9 ⇒a = 9 ƯCLN(27,18) ⇒a = 9
Vậy chia 9 thì số học sinh ở mỗi tổ là ít nhất .
ƯCLN (27;18)= 9
Ư(9)= {1;3;9}
=> Có 2 cách chia để số học sinh nam và nữ mỗi tổ như nhau.
C1: Cách 1 là mỗi tổ có 3 nam 2 nữ (9 tổ)
C2: Mỗi tổ có 9 nam 6 nữ (3 tổ)
Gọi số tổ phải chia là a ( tổ ). ( a \(\in\)\(ℕ^∗\); a > 1 )
Vì phải chia đều số hs vào các tổ nên :
18 \(⋮\)a 24 \(⋮\)a \(\Rightarrow\)a \(\in\)ƯC ( 18 ; 24 )
Để mỗi tổ có số hs ít nhất thì a phải lớn nhất \(\Rightarrow\)a \(\in\)ƯCLN ( 18 ; 24 )
có : 18 = 22. 7 24 = 23. 3
ƯCLN ( 18 ; 24 ) = 22= 4.
Vậy phải chia đều số hs vào 4 tổ.
1: \(36=3^2\cdot2^2;32=2^5\)
=>\(ƯCLN\left(36;32\right)=2^2=4\)
Để có thể chia đều 36 nam và 32 nữ vào các tổ thì số tổ phải là ước chung của 36 và 32
=>Số tổ sẽ là ước của 4
mà Ư(4)={1;2;4}
và số tổ nhiều hơn 1
nên có 2 cách chia
Để số học sinh trong mỗi tổ là ít nhất thì số tổ là nhiều nhất
=>Số tổ nhiều nhất là 4 tổ
Khi đó, số học sinh mỗi tổ là: \(\dfrac{36+32}{4}=17\left(bạn\right)\)
Gọi a là số cách chia tổ để số học sinh nam và nữ đều nhau
Ta có: a:30;a:18 => a thuộc ƯC(30;18)=Ư(6)={1;2;3;6}
Cách chia 6 tổ để mỗi tổ có học sinh ít nhất
Vậy số cách chia tổ để số học sinh nam và nữ đều nhau là 4 cách
Cách chia 6 tổ để mỗi tổ có học sinh ít nhất
mk k chắc nữa, Chúc bạn học tốt!^_^
6 tổ
có 4 cách chia tổ