K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

Gọi A là tập hợp các học sinh của lớp 10A;

V là tập hợp các học sinh giỏi môn Văn và T là tập hợp các học sinh giỏi môn Toán của lớp 10A.

Kí hiệu |X| là số phần tử của tập hợp hữu hạn X.

Ta có

Đáp án D

Tổng số học sinh giỏi là: 45 – 13 = 32

Số học sinh chỉ giỏi Văn là: 32 – 25 = 7

Số học sinh chỉ giỏi Toán là: 32 – 17 =15

Số học sinh giỏi cả hai môn là: 32 – 7 – 15 = 10.

23 tháng 9 2021

Gọi x, y, z lần lượt là số học sinh đạt loại giỏi một môn, hai môn và ba môn. Lập sơ đồ Ven liên hệ giữa các tập hợp, ta có hệ phương trình:

x + y + z = 45 − 7 x + 2 y + 3 z = 20 + 18 + 17 z = 5 ⇔ x = 26 y = 7 z = 5.

Vậy số học sinh đạt loại giỏi một môn là 26 em.

24 tháng 8 2019

Sơ đồ học sinh lớp 10A: 25 bạn 20 bạn 15 bạn 5 1 6 7

Số học sinh thích môn toán và tiếng anh và văn là:(25+15+20)-(5+7+1+6)=42(bạn)

Số học sinh không thích môn nào là:45-42=3(học sinh)

1 tháng 2 2021

eh8 ihgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

28 tháng 2 2019

Đáp án A

Theo giả thiết đề bài cho, ta có biểu đồ Ven:

 

Dựa vào biểu đồ Ven ta thấy:

Số học sinh chỉ giỏi Toán và Lý (không giỏi Hóa) là: 6−3=3 (em)

Số học sinh chỉ giỏi Toán và Hóa (không giỏi Lý) là: 4−3=1 (em)

Số học sinh chỉ giỏi Lý và Hóa (không giỏi Toán) là: 5−3=2 (em)

Số học sinh chỉ giỏi một môn Toán là: 10−3−3−1=3 (em)

Số học sinh chỉ giỏi một môn Lý là: 10−3−3−2=2 (em)

Số học sinh chỉ giỏi một môn Hóa là: 11−1−3−2=5 (em)

Số học sinh giỏi ít nhất một trong ba môn là:

3+2+5+1+2+3+3=19 (em)

17 tháng 12 2021

A

Số học sinh chỉ giỏi Toán là:

20-10=10(bạn)

Số học sinh chỉ giỏi Lý là:

20-10=10(bạn)

Số học sinh chỉ giỏi Hóa là:

45-10-10=25(bạn)

7 tháng 11 2021

undefinedgiúp em với ạ

 

 

11 tháng 5 2018

Đáp án C

Số học sinh giỏi toán, lý mà không giỏi hóa: 3−1=2.

Số học sinh giỏi toán, hóa mà không giỏi lý: 4−1=3.

Số học sinh giỏi hóa, lý mà không giỏi toán: 2−1=1.

Số học sinh chỉ giỏi môn lý: 5−2−1−1=1.

Số học sinh chỉ giỏi môn hóa: 6−3−1−1=1.

Số học sinh chỉ giỏi môn toán: 7−3−2−1=1.

Số học sinh giỏi ít nhất một (môn toán, lý, hóa) là số học sinh giỏi 1 môn hoặc 2 môn hoặc cả 3 môn: 1+1+1+1+2+3+1=10.

30 tháng 7 2021

bn ơi bn cho mik hỏi cái câu hỏi số hs......toán lý hóa cái câu ng ta hỏi đấy là như nào ạ mik đọc mik k hiểu lắm